
Garbage Collection

Terminology

• Heap – a finite pool of data cells, can be
organized in many ways

• Roots - Pointers from the program into the Heap.
– We must keep track of these.
– All pointers from global varaibles
– All pointers from temporarys (often on the stack)

• Marking – Tracing the live data, starting at the
roots. Leave behind a “mark” when we have
visited a cell.

Things to keep in mind

• Costs – How much does it cost as function of
– All data
– Just the live data

• Overhead – Garbage collection is run when we
have little or no space. What space does it
require to run the collector?

• Complexity – How can we tell we are doing
the right thing?

Structure of the Heap

Things to note in a Mark and sweep
collector

The Freelist
The Roots
Links from function closures
Links from data (like pair or list)
Constants

Structure of the Heap

(fun f (x) (+ x 7))
(val x 45)
(val y
 (let (val x 6)
 (val y 2)
 in (\ (a)
 (+ x (+ y

a)))))
(val z (pair 7 'c'))

Changes in the heap
• Intermediate result computation

– (@ f (fst z))
• Assignment to things
• Garbage collection

Changes in the heap
• Intermediate result
 computation
• Assignment to things

– (:= y (pair 7 ‘c’))
• Garbage collection

Garbage Collection

Mark and Sweep
• Cells have room for several things beside data

data HCell a = Cell { mark::(IORef Bool)
 , key :: Int
 , payload :: IORef a
 , allocLink:: IORef (HCell a)
 , allLink:: HCell a }
 | NullCell

• All cells start linked together on the free list
• Allocation takes 1 (or more cells) from the free list
• Garbage collection has two phases

– Mark (trace all live data from the roots)
– Sweep (visit every cell, and add unmarked cells to free list)

Mark phase (turns cells red in this picture).

Where do links into the heap reside?

• In the environment

interpE :: Env (Range Value) -- the variables in scope
 -> State -- the heap
 -> Exp -- exp to interpret
 -> IO(Value,State)

• Inside data values

data Value
 = IntV Int
 | CharV Char
 | ConV String Int (Range Value)
 | FunV Vname (Env (Range Value)) [Vname] Exp

Mark a cell
markCell markV NullCell = return NullCell
markCell markV (cell@(Cell m id p l1 l2)) =
 do { b <- readIORef m; help b }
 where help True = return cell
 help False =
 do { writeIORef m True
 ; v <- readIORef p
 ; v2 <- markV
 (markRange markV) v
 ; writeIORef p v2
 ; return cell}

Sweeping through memory
sweep (H all free) NullCell = return (H all free)
sweep (H all free) (c@(Cell m id p l more)) =
 do { b <- readIORef m
 ; if b then do { writeIORef m False
 ; sweep (H all free) more }
 else do { -- link it on the free
 writeIORef l free
 ; sweep (H all c) more }}

Mark phase (turns cells red in this picture).

Two space collector

• The heap is divided into two equal size regions
• We allocate in the “active” region until no more

space is left.
• We trace the roots, creating an internal linked list

of just the live data.
• As we trace we compute where the cell will live in

the new heap.
• We forward all pointers to point in the new

inactive region.
• Flip the active and inactive regions

A heap Cell

data HCell a =
 Cell { mark :: Mutable Bool
 , payload :: Mutable a
 , forward :: Mutable Addr
 , heaplink:: Mutable Addr
 , showR:: a -> String }

The Heap

data Heap a =
 Heap
 { heapsize :: Int
 , nextActive :: Addr
 , active :: (Array Int (HCell a))
 , inactive:: (Array Int (HCell a))
 , nextInActive:: Mutable Addr
 , liveLink:: Mutable Addr }

(val tim (+ 1 2))
(fun h (x) (+ x tim))

(fun map (f xs) (if (ispair xs)
 (pair (@ f (fst xs))
 (@ map f (snd xs)))
 xs))

(fun plus1 (x) (+ x 1))

(val g (@map plus1))

(val ans (@g (pair 1 (pair 2 (pair 3 0)))))

in

ans { should yield (2.(3.(4.0))) }

(val tim (+ 1 2))
(fun h (x) (+ x tim))

(fun map (f xs) (if (ispair xs)
 (pair (@ f (fst xs))
 (@ map f (snd xs)))
 xs))

(fun plus1 (x) (+ x 1))

(val g (@map plus1))

(val ans (@g (pair 1 (pair 2 (pair 3 0)))))

in

ans { should yield (2.(3.(4.0))) }

markAddr :: (GCRecord a) -> Addr -> IO Addr
markAddr (rec@(GCRec heap markpay showV)) index = mark cell
 where cell = active heap ! index
 nextFreeInNewHeap = nextInActive heap
 markedList = liveLink heap
 mark (Cell m payld forward reachable showr) =
 do { mark <- readIORef m
 ; if mark
 then do readIORef forward
 else do {
 -- Set up recursive marking
 ; new <- fetchAndIncrement nextFreeInNewHeap
 ; next <- readIORef markedList
 ; writeIORef markedList index

 -- Update the fields of the cell, showing it is marked
 ; writeIORef m True
 ; writeIORef forward new
 ; writeIORef reachable next

 -- recursively mark the payload
 ; v <- readIORef payld
 ; v2 <- markpay (markRange rec) v

 -- copy payload in the inactive Heap with
 -- all payload pointers relocated .
 ; writeIORef (payload ((inactive heap) ! new)) v2
 -- finally return the Addr where this cell will be relocated to.
 ; return new }}

	Garbage Collection
	Terminology
	Things to keep in mind
	Structure of the Heap
	Structure of the Heap
	Changes in the heap
	Changes in the heap
	Garbage Collection
	Mark and Sweep
	Slide Number 10
	Where do links into the heap reside?
	Mark a cell
	Sweeping through memory
	Slide Number 14
	Slide Number 15
	Two space collector
	A heap Cell
	The Heap
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23

