
Garbage Collection 



Terminology 

• Heap – a finite pool of data cells, can be 
organized in many ways 

• Roots -  Pointers from the program into the Heap.  
– We must keep track of these. 
– All pointers from global varaibles 
– All pointers from temporarys (often on the stack) 

• Marking – Tracing the live data, starting at the 
roots. Leave behind a “mark” when we have 
visited a cell. 

 



Things to keep in mind 

• Costs – How much does it cost as function of 
– All data 
– Just the live data 

• Overhead – Garbage collection is run when we 
have little or no space. What space does it 
require to run the collector? 

• Complexity – How can we tell we are doing 
the right thing? 



Structure of the Heap 

Things to note in a Mark and sweep 
collector 

The Freelist 
The Roots 
Links from function closures 
Links from data (like pair or list) 
Constants 



Structure of the Heap 

(fun f (x) (+ x 7)) 
(val x 45) 
(val y  
   (let (val x 6)  
        (val y 2)  
    in (\ (a) 
          (+ x (+ y 

a))))) 
(val z (pair 7 'c')) 



Changes in the heap 
• Intermediate result computation 

– (@ f (fst z)) 
• Assignment to things 
• Garbage collection 
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Garbage Collection 



Mark and Sweep 
• Cells have room for several things beside data 
 
data HCell a = Cell { mark::(IORef Bool) 
                    , key :: Int 
                    , payload :: IORef a 
                    , allocLink:: IORef (HCell a) 
                    , allLink:: HCell a } 
             | NullCell 

 
• All cells start linked together on the free list 
• Allocation takes 1 (or more cells) from the free list 
• Garbage collection has two phases 

– Mark  (trace all live data from the roots) 
– Sweep (visit every cell, and add unmarked cells to free list) 



Mark phase (turns cells red in this picture). 



Where do links into the heap reside? 

• In the environment 
 

interpE :: Env (Range Value)       -- the variables in scope 
        -> State                   -- the heap 
        -> Exp                     -- exp to interpret 
        -> IO(Value,State)  

 
 

• Inside data values 
 

data Value  
  = IntV Int  
  | CharV Char  
  | ConV String Int (Range Value) 
  | FunV Vname (Env (Range Value)) [Vname] Exp  



Mark a cell 
markCell markV NullCell = return NullCell 
markCell markV (cell@(Cell m id p l1 l2)) =  
      do { b <- readIORef m; help b } 
  where help True = return cell 
        help False =  
           do { writeIORef m True 
              ; v <- readIORef p 
              ; v2 <- markV  
                       (markRange markV) v 
              ; writeIORef p v2 
              ; return cell} 



Sweeping through memory 
sweep (H all free) NullCell = return (H all free) 
sweep (H all free) (c@(Cell m id p l more)) = 
  do { b <- readIORef m 
     ; if b then do { writeIORef m False 
                    ; sweep (H all free) more } 
            else do { -- link it on the free 
                      writeIORef l free    
                    ; sweep (H all c) more }} 



Mark phase (turns cells red in this picture). 





Two space collector 

• The heap is divided into two equal size regions 
• We allocate in the “active” region until no more 

space is left. 
• We trace the roots, creating an internal linked list 

of just the live data. 
• As we trace we compute where the cell will live in 

the new heap. 
• We forward all pointers to point in the new 

inactive region. 
• Flip the active and inactive regions 



A heap Cell 

data HCell a =  
  Cell { mark :: Mutable Bool 
       , payload :: Mutable a 
       , forward :: Mutable Addr 
       , heaplink:: Mutable Addr 
       , showR:: a -> String } 



The Heap 

data Heap a =  
  Heap  
    { heapsize    :: Int 
    , nextActive :: Addr 
    , active  :: (Array Int (HCell a)) 
    , inactive:: (Array Int (HCell a)) 
    , nextInActive:: Mutable Addr 
    , liveLink:: Mutable Addr } 



 
(val tim (+ 1 2)) 
(fun h (x) (+ x tim)) 
 
(fun map (f xs) (if (ispair xs) 
                    (pair (@ f (fst xs))  
                          (@ map f (snd xs))) 
                    xs)) 
                                
(fun plus1 (x) (+ x 1)) 
 
(val g (@map plus1)) 
 
(val ans (@g (pair 1 (pair 2 (pair 3 0)))) )  
 
in  
          
ans  { should yield (2.(3.(4.0))) }  
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markAddr :: (GCRecord a) -> Addr -> IO Addr   
markAddr (rec@(GCRec heap markpay showV )) index = mark cell 
  where cell = active heap ! index 
        nextFreeInNewHeap = nextInActive heap 
        markedList = liveLink heap 
        mark (Cell m payld forward reachable showr) =  
          do { mark <- readIORef m 
             ; if mark 
                  then do readIORef forward 
                  else do { 
             -- Set up recursive marking  
             ; new <- fetchAndIncrement nextFreeInNewHeap  
             ; next <- readIORef markedList 
             ; writeIORef markedList index 
              
             -- Update the fields of the cell, showing it is marked 
             ; writeIORef m True 
             ; writeIORef forward new 
             ; writeIORef reachable next 
              
             -- recursively mark the payload 
             ; v <- readIORef payld 
             ; v2 <- markpay (markRange rec) v 
              
             -- copy payload in the inactive Heap with  
             -- all payload pointers relocated . 
             ; writeIORef (payload ((inactive heap) ! new)) v2 
             -- finally return the Addr where this cell will be relocated to. 
             ; return new }} 
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