
CS558 Programming Languages
Winter 2013

Lecture 3

1

NAMES AND B INDING

One essential part of being a “high-level” language is having convenient
names for things:

variables
constants
types
functions
etc.

classes
modules
record fields
operators

• Allowed syntactic form of names varies for different languages, but
intended to be human-readable.

We distinguish binding and use occurrences of a name.

• A binding makes an association between a name and the thing it
names.

• A use refers to the thing named.

PSU CS558 W’13 LECTURE 3 c© 1994–2013 ANDREW TOLMACH 2

B INDING AND USE EXAMPLES

For example, in this OCaml code:

let rec f (x:int) =

if (x > 0) then

f(x + 1)

else 0

The first line binds both f (as a recursive function) and x (as a formal
parameter); the second line uses x; the third line uses both f and x.

It is common for some names to be pre-defined for all programs in a
language, e.g., the type name int in the above example. Often the
binding of these names is done in a standard library that is implicitly
included in all programs. It may or may not be legal for programs to
redefine these names.

Don’t confuse pre-defined names with built-in keywords in the language,
like let and if in the above example. Keywords are a fixed part of the
language syntax and can never be redefined.

Are operators like + and > fixed or definable ?

PSU CS558 W’13 LECTURE 3 c© 1994–2013 ANDREW TOLMACH 3

SCOPING RULES

A key characteristics of any binding is its scope : in what textual region of
the program is the binding visible?

• I.e., where in the program can the name be used?

• Alternatively: given a use of the name, how do we find the relevant
binding for it?

In most languages, the scope of a binding is based on certain rules for
reading the program text. This is called lexical scope. (Or static scope,
because the connection between binding and use can be determined
statically, without actually running the program.)

The exact rules for lexical scoping depend on the kind of name and the
language.

PSU CS558 W’13 LECTURE 3 c© 1994–2013 ANDREW TOLMACH 4

DELIMITING SCOPES

Depending on the language, many different kinds of syntax constructs
might be used to define scope boundaries:

• Functions (e.g. in C/C++/Java/...):

int f(int x) { return x+1; }

• Blocks (e.g. in C/C++/Java/...):

while (1) { int x = 10; y = x+1; }

• Expressions (e.g. in OCaml):

(let x = 10 in x+1) + 10

• Classes (e.g. in Java):

class Foo { int y; int f(int x) { return x + y; } }

• Files (e.g. in C)

PSU CS558 W’13 LECTURE 3 c© 1994–2013 ANDREW TOLMACH 5

TYPICAL SCOPING RULES ILLUSTRATED IN C

static int x = 101;

bar (double y) {

if (y > x)

bar(y + 1.0);

}

main () {

double v = bar (3.14);

double z = 99.0;

{ double w; /* inner block */

w = z + x;

}

}

• x is in scope throughout this C file (but not in other files).

• bar is in scope from its point of definition to the end of the C file
(including its own body); similarly for main.

• y is in scope throughout the body of bar; similarly for v.

• z is in scope from its point of definition to the end of main.

• w is in scope inside the inner block of main.

PSU CS558 W’13 LECTURE 3 c© 1994–2013 ANDREW TOLMACH 6

NAME B INDING CONFLICTS

What happens when the same name is bound in more than one place?

• If the bindings are to different kinds of things (e.g., types vs. variables),
the language’s concrete syntax often gives a way to distinguish the uses,
so no problem arises (except perhaps for readability):

typedef int foo; /* foo is a synonym for int */

foo foo = 3;

foo w = foo + 1;

• Here we say that types and variables live in different name spaces .

But what if there are duplicate bindings within a single name space?

• If the bindings occur in a single scoping construct, this is usually treated
as an error.

• Sometimes additional rules (such as typing information) is used to
determine which binding is meant. Names like this are said to be
overloaded .

PSU CS558 W’13 LECTURE 3 c© 1994–2013 ANDREW TOLMACH 7

NESTED SCOPES

Scoping constructs can often be nested (e.g. a block within a function).
What if the same name is bound in a scope and also in some nested
inner scope?

• In most languages, a re-binding in a nested inner scope hides (or shadows)
the outer binding; this creates a hole in the scope of the outer binding.
E.g. in C:

int a = 0;

int f(int b) {

return a+b; /* use of global a */

}

void main() {

int a = 1;

print (f(a)); /* use of local a; prints 1 */

}

• Under this sort of scoping, we can find the binding relevant to a
particular use by looking up the program text and out through any
nesting constructs.

PSU CS558 W’13 LECTURE 3 c© 1994–2013 ANDREW TOLMACH 8

PYTHON SCOPE RULES

• These nested scope rules are quite common, but there’s nothing magic
about them; some languages use different rules.

• E.g., Python normally uses no variable declarations. The local variables
of a function are defined to be just the set of variables that are written to
somewhere in the (textual) body of the function.

a = 100

def f(x):

return x+a # reads global a

f(10) # yields 110

def g(x):

a = 101 # writes local a

return x+a # reads local a

g(10) # yields 111

a # yields 100

def h(x):

a = a + 1 # reads, writes local a

return a

h(10) # yields an error (local a has no value when read)

PSU CS558 W’13 LECTURE 3 c© 1994–2013 ANDREW TOLMACH 9

PYTHON SCOPE RULES (CONTINUED)

• In order to write the value of a variable that lives at an outer scope,
code must explicitly declare it as global or (since Python3) nonlocal.

a = 100

def g(x):

global a

a = 101 # writes global a

return x+a # reads global a

g(10) # yields 111

a # yields 101

def f():

a = 200 # writes f’s local a

def g():

nonlocal a

a = a+1 # writes f’s local a

return 1

b = g()

return a+b

f() # yields 202

PSU CS558 W’13 LECTURE 3 c© 1994–2013 ANDREW TOLMACH 10

NAMED SCOPES: MODULES , CLASSES , ...

Often, the construct that delimits a scope can itself have a name, allowing
the programmer to manage explicitly the visibility of the names inside it.

• OCaml modules example

module Env = struct

type env = (string * int) list

let empty : env = []

let rec lookup (e:env) (k:string) : int = ...

end

let e0 : Env.env = Env.empty in Env.lookup e0 "abc"

• Java classes example

class Foo {

static int x;

static void f(int x);

}

int z = Foo.f(Foo.x)

PSU CS558 W’13 LECTURE 3 c© 1994–2013 ANDREW TOLMACH 11

HANDLING MUTUALLY RECURSIVE DEFINITIONS

• In most languages, scopes flow strictly downward from definitions, so
that if the definition of x depends on y, then y must be defined first
(textually).

• But this doesn’t allow for mutually recursive definitions (because no
single ordering works), which is commonly wanted for functions and
types (less often for values).

• So some languages widen the scope of a binding to include the entire
syntactic construct in which it is placed. E.g. in Java:

class Foo {

static void f(double x) { g(x+1.0); }

static void g(double y) { f(y-1.0) + Bar.h(42.0); }

}

class Bar {

static void h(double z) { Foo.f(z); }

}

PSU CS558 W’13 LECTURE 3 c© 1994–2013 ANDREW TOLMACH 12

RECURSIVE DEFINITIONS (CONTINUED)

• Another alternative is distinguish declarations from definitions .
E.g. in C:

void g (double y); /* declares g but doesn’t define it */

void f(double x) { g(x+1.0); }

void g(double y) { f(y-1.0); } /* definition is here */

• Historically, this approach was taken so that compilers could process
programs one function in a single forward pass (no longer a common
requirement).

• A third alternative is to use explicit syntax to link mutually resursive defi-
nitions. E.g. in OCaml:

let rec f(x:float) = g(x +. 1.0)

and g(y:float) = f(y -. 1.0)

• Note that all these approaches to recursion break the “up and out” rule
for finding bindings.

PSU CS558 W’13 LECTURE 3 c© 1994–2013 ANDREW TOLMACH 13

DYNAMIC SCOPE

There’s an alternative approach to scoping which depends on program
execution order rather than just the static program text. Under dynamic
scoping , bindings are (conceptually) found by looking backward through
the program execution to find the most recent binding that is still active.

An earlier example (still in C syntax):

int a = 0;

int f(int b) {

return a+b; }

void main() {

int a = 1;

print (f(a)); }

• Here the use of a in f refers to the local declaration of a within main.

• Global a isn’t used at all; result printed is 2.

• Early versions of LISP used dynamic scope, but it was generally agreed
to be a mistake.

• Some scripting languages still use it (mainly to simplify implementation).

PSU CS558 W’13 LECTURE 3 c© 1994–2013 ANDREW TOLMACH 14

FREE NAMES

In any given program fragment (expression,statement, etc.) we can ask:
which names are used but not bound ? These are called the free names
of the fragment.

The notion of free depends both on the name and the fragment. For
example, given the C fragment

int f (int x) {

return x + y;

}

we say that y is free, but x is not. (What other names are free?)

However, in the sub-fragment

return x+y;

we say that both x and y are free.

The meaning of a fragment clearly must depend on the values of its free
names. To handle this, we usually give semantics to fragments relative to
an environment .

PSU CS558 W’13 LECTURE 3 c© 1994–2013 ANDREW TOLMACH 15

ENVIRONMENTS

An environment is just a mapping from names to their meanings.
Exactly what gets associated to a name depends on the kind of name:

For example:

• a variable name usually gets bound to the location containing the value
of the variable.

• function names usually get bound to descriptions of the function’s
parameters and body.

• type names get bound to a description of the type, including the layout
of its values.

• module names get bound to a list of the contents of the module.

• constant names get bound to a value (either at compile time or at run
time). “Variables” in purely functional languages work act like constants
computed at run time.

PSU CS558 W’13 LECTURE 3 c© 1994–2013 ANDREW TOLMACH 16

REPRESENTING ENVIRONMENTS

To implement operational semantics as an interpreter, we need to choose
a concrete representation for environments that supports the operations.

In particular, we want to make it easy to extend an environment with new
bindings — which may hide existing bindings — while still keeping the old
environment around. (This is useful so that we can enter and exit nested
scopes easily.)

A simple approach is to use a singly-linked list, which is always searched
from, and extended at, its head.

A more efficient approach might be to use a balanced tree or hash table.
But we’ll stick to the simpler list-based approach in our interpreters.

PSU CS558 W’13 LECTURE 3 c© 1994–2013 ANDREW TOLMACH 17

L IST-BASED ENVIRONMENTS : EXAMPLE

int a = 0; /* env1 */

{

int b = 1;

int a = 2; /* env2 */

a = a + b;

}

a = a + 1;

’a’ 2 ’b’ 1 ’a’ 0 X

env2 env1

PSU CS558 W’13 LECTURE 3 c© 1994–2013 ANDREW TOLMACH 18

VALUES AND LOCATIONS

In most imperative programming languages, variable names are bound
to locations , i.e. memory addresses, which in turn contain values . So
declaring a variable typically involves two separate operations:

• allocating a new location (e.g., on the stack or in the heap) and perhaps
initializing its contents;

• creating a new binding from the variable name to the location.

At an abstract level, we can temporarily ignore the question of where new
locations are created, and simply say that the program has a mutable
store , which maps locations to values.

But most languages support several different kinds of storage locations;
to understand these languages, we’ll need to model the store in more
detail.

PSU CS558 W’13 LECTURE 3 c© 1994–2013 ANDREW TOLMACH 19

STORAGE L IFETIMES

Typically, a computation requires more locations over the course of its
execution than the target machine can efficiently provide — but at any
given point in the computation, only some of these locations are needed.

Thus nearly all language implementations support the re-use of locations
that are no longer needed.

The lifetime of an allocated piece of memory (loosely, an “object”)
extends from the time when it is allocated into one or more locations to
the time when the location(s) are freed for (potential) re-use.

For the program to work correctly, the lifetime of every object should last
as long as the object is being used. Otherwise, a memory bug will occur.

Most higher-level languages provide several different classes of storage
locations, classified by their lifetimes.

PSU CS558 W’13 LECTURE 3 c© 1994–2013 ANDREW TOLMACH 20

STORAGE CLASSES BASED ON DATA L IFETIME

Static Data : Permanent Lifetimes

• Global variables and constants.

• Allows fixed address to be compiled into code.

• No runtime management costs.

• Original FORTRAN (no recursion) used even for local variables.

Stack Data : Nested Lifetimes

• Allocation/deallocation and access are cheap (via stack pointer).

• Good locality for VM systems, caches.

• Most languages (including C, Algol/Pascal family, Java, etc.) use stack
to store local variables (and internal control data for function calls).

Heap Data : Arbitrary Lifetimes

• Supports explicit allocation; needs deallocation or garbage collection.

• Lisp, OCaml, many interpreted languages use heap to store local
variables, because these have non-nested lifetimes.

PSU CS558 W’13 LECTURE 3 c© 1994–2013 ANDREW TOLMACH 21

SCOPE, L IFETIME, AND MEMORY BUGS

Lifetime and scope are closely connected. To avoid memory bugs, it
suffices to make sure that in-scope identifiers never point (directly or
indirectly) to deallocated storage areas.

For stack data, the language implementation normally enforces this
requirement automatically.

• A function’s local variables are typically bound to locations in a stack
frame whose lifetime lasts from the time the function is called to the time
it returns — exactly when its variables go out of scope for the last time.

For heap data, the requirement is trickier to enforce, unless the language
uses a garbage collector.

• Most collectors work by recursively tracing all objects that are
accessible from identifiers currently in scope (or that might come back
into scope later during execution).

• Only unreachable objects are deallocated for possible future re-use.

PSU CS558 W’13 LECTURE 3 c© 1994–2013 ANDREW TOLMACH 22

PROBLEMS WITH EXPLICIT CONTROL OF L IFETIMES

Many older languages support pointers and explicit deallocation of
storage, which is typically somewhat more efficient than garbage
collection.

But explicit deallocation makes it easy for the programmer to accidentally
kill off an object even though it is still accessible, e.g.:

char *foo() {

char *p = malloc(100);

free(p);

return p;}

Here the allocated storage remains accessible (via the value of variable
p) even after that storage has been freed (and possibly reallocated for
something else).

This is usually a bug (a dangling pointer). The converse problem, failing
to deallocate an object that is no longer needed, can cause a space leak ,
leading to unnecessary failure of a program by running out of memory.

PSU CS558 W’13 LECTURE 3 c© 1994–2013 ANDREW TOLMACH 23

LARGE VALUES

Real machines are very efficient at handling small, fixed-size chunks of
data, especially those that fit in a single machine word (e.g. 16-64 bits),
which usually includes:

• Numbers, characters, booleans, enumeration values, etc.

• Memory addresses (locations).

But often we want to manipulate larger pieces of data, such as records
and arrays, which may occupy many words.

There are two basic approaches to representing larger values:

• The unboxed representation uses as many words as necessary to hold
the contents of the value.

• The boxed representation of a large value implicitly allocates storage
for the contents on the heap, and then represents the value by a pointer
to that storage.

PSU CS558 W’13 LECTURE 3 c© 1994–2013 ANDREW TOLMACH 24

BOXED VS. UNBOXED

For example, consider an array of 100 integers. In an unboxed
representation, the array would be represented directly by 100 words
holding the contents of the array. In a boxed representation, the array
would be indirectly represented by an implicit 1-word pointer to 100
consecutive locations holding the array contents.

The language’s choice of representation makes a big difference to the
semantics of operations on the data, e.g.:

• What does assignment mean?

• How does parameter passing work?

• What do equality comparisons mean?

PSU CS558 W’13 LECTURE 3 c© 1994–2013 ANDREW TOLMACH 25

UNBOXED REPRESENTATION SEMANTICS

Earlier languages often used unboxed representations for records and ar-
rays. For example, in Pascal and related languages,

TYPE Employee =

RECORD

name : ARRAY (1..80) OF CHAR;

age : INTEGER;

END;

specifies an unboxed representation, in which value of type Employee will
occupy 84 bytes (assuming 1 byte characters, 4 byte integers).

The semantics of assignment is to copy the entire representation. Hence

VAR e1,e2 : Employee;

e1.age := 91;

e2 := e1;

e1.age := 19;

WRITE(e1.age, e2.age);

prints 19 followed by 91.

PSU CS558 W’13 LECTURE 3 c© 1994–2013 ANDREW TOLMACH 26

UNBOXED REPRESENTATION PROBLEMS

Assignment using the unboxed representation has appealing semantics,
but two significant problems:

• Assignment of a large value is expensive, since lots of words may need
to be copied.

• Since compilers need to generate code to move values, and (often)
allocate space to hold values temporarily, they need to know the size of
the value.

These problems make the unboxed representation unsuitable for value of
arbitrary size . For example, unboxed representation can work fine for
pairs of integers, but not for pairs of arbitrary values that might
themselves be pairs.

PSU CS558 W’13 LECTURE 3 c© 1994–2013 ANDREW TOLMACH 27

BOXED REPRESENTATION SEMANTICS

OCaml implicitly allocates tuples and constructed values in the heap,
and represents values of these types by references (pointers) into the
heap. Python does the same thing with objects.

As a natural result, both languages use so-called reference semantics for
assignment and argument passing. Python example:

class emp:

def __init__(self, name, age):

self.name = name

self.age = age

e1 = emp("Fred",91)

e2 = e1

e1.age = 18

print(e2.age)

prints 18

PSU CS558 W’13 LECTURE 3 c© 1994–2013 ANDREW TOLMACH 28

BOXED REPRESENTATION (2)

If you want to copy the entire contents of record or object, you must do it
yourself, element by element (though Python has a standard library
method called copy to do the job).

Notice that the difference between copy and reference semantics only
matters for mutable data; for immutable data (the default in OCaml), you
can’t tell the difference (except perhaps for efficiency).

Neither language allows user programs to manipulate the internal
pointers directly. And neither supports explicit deallocation of records (or
objects) either; both provide automatic garbage collection of
unreachable heap values.

PSU CS558 W’13 LECTURE 3 c© 1994–2013 ANDREW TOLMACH 29

EXPLICIT POINTERS

Many languages that use unboxed semantics also have separate pointer
types to enable programmers to construct recursive data structures, e.g.
in C++

struct Intlist {

int head;

Intlist *tail;

};

Intlist *mylist = new Intlist;

mylist->head = 42;

mylist->tail = NULL;

delete mylist;

In C/C++, pointers can hold arbitrary memory locations, which opens up
many more possibilities for memory bugs beyond those already allowed
by explicit deallocation.

In most other languages with explicit pointers, the pointers can only ever
hold addresses returned from the allocation operator, so they don’t add
any additional memory bug potential.

PSU CS558 W’13 LECTURE 3 c© 1994–2013 ANDREW TOLMACH 30

PAIRS

We can start studying “large” values in our interpreters by adding in just
one new kind of value, the pair . You can think of a pair as a record with
two fields, each containing a value — which might be an integer or
another pair.

We write pairs using “infix dot” notation. For example:

(1 . ((2 . 3) . 4))

corresponds to the structure:

2 3

4

1

We can build larger records of a fixed size just by nesting pairs.

PSU CS558 W’13 LECTURE 3 c© 1994–2013 ANDREW TOLMACH 31

L ISTS

We can also build all kinds of interesting arbitrary-sized recursive
structures using pairs.

For example, to represent lists we can use a pair for each link in the list.
The left field contains an element; the right field points to the next link, or
is 0 to indicate end-of-list.

Example:

[1,2,3]

(1.(2.(3.0)))

1 2 3 0

Note that for programs to detect when they’ve hit the end of a list, they’ll
need a way to distinguish integers from pairs.

PSU CS558 W’13 LECTURE 3 c© 1994–2013 ANDREW TOLMACH 32

FORMAL OPERATIONAL SEMANTICS

So far, we’ve presented operational semantics using interpreters. These
have the advantage of being precise and executable . But they are not
ideally compact or abstract .

Another way to present operational semantics is using state transition
judgments , for appropriately defined machine states.

For example, consider a simple language of imperative expressions, in
which variables must be defined before use, using a local construct.

exp := var | int

| ’(’ ’+’ exp exp ’)’

| ’(’ ’local’ var exp exp ’)’

| ’(’ ’:=’ var exp ’)’

| ’(’ ’if’ exp exp exp ’)’

| ’(’ ’while’ exp exp ’)’

| etc.

Informally, the meaning of (local x e1 e2) is: evaluate e1 to a value v1,
create a new store location l bound to x and initialized to v1, and evaluate
e2 in the resulting environment and store.

PSU CS558 W’13 LECTURE 3 c© 1994–2013 ANDREW TOLMACH 33

STATE MACHINE

To evaluate this language, we choose a machine state consisting of:

• the current environment E, which maps each in-scope variable to a
location l.

• the current store S, which maps each location l to an integer value v.

• the current expression e, to be evaluated.

We give the state transitions in the form of judgments :

〈e, E, S〉 ⇓ 〈v, S′〉

Intuitively, this says that evaluating expression e in environment E and
store S yields the value v and the (possibly) changed store S′.

PSU CS558 W’13 LECTURE 3 c© 1994–2013 ANDREW TOLMACH 34

OPERATIONAL SEMANTICS BY INFERENCE

To describe the machine’s operation, we give rules of inference that
state when a judgment can be derived from judgments about
sub-expressions.

The form of a rule is

premises
conclusion

(Name of rule)

We can view evaluation of the program as the process of building an
inference tree.

This notation has similarities to axiomatic semantics: the notion of
derivation is essentially the same, but the content of judgments is
different.

PSU CS558 W’13 LECTURE 3 c© 1994–2013 ANDREW TOLMACH 35

ENVIRONMENTS AND STORES, FORMALLY

• We write E(x) means the result of looking up x in environment E. (This
notation is because an environment is like a function taking a name as
argument and returning a meaning as result.)

• We write E + {x 7→ v} for the environment obtained from existing
environment E by extending it with a new binding from x to v. If E
already has a binding for x, this new binding replaces it.

The domain of an environment, dom(E), is the set of names bound in E.

Analogously with environments, we’ll write

• S(l) to mean the value at location l of store S

• S + {l 7→ v} to mean the store obtained from store S by extending (or
updating) it so that location l maps to value v.

• dom(S) for the set of locations bound in store S.

Also, we’ll write

• S − {l} to mean the store obtained from store S by removing the
binding for location l.

PSU CS558 W’13 LECTURE 3 c© 1994–2013 ANDREW TOLMACH 36

EVALUATION RULES (1)

l = E(x) v = S(l)

〈x,E, S〉 ⇓ 〈v, S〉
(Var)

〈i, E, S〉 ⇓ 〈i, S〉
(Int)

〈e1, E, S〉 ⇓ 〈v1, S
′〉 〈e2, E, S′〉 ⇓ 〈v2, S

′′〉

〈(+ e1 e2), E, S〉 ⇓ 〈v1 + v2, S
′′〉

(Add)

〈e1, E, S〉 ⇓ 〈v1, S
′〉 l /∈ dom(S′)

〈e2, E + {x 7→ l}, S′ + {l 7→ v1}〉 ⇓ 〈v2, S
′′〉

〈(local x e1 e2), E, S〉 ⇓ 〈v2, S
′′ − {l}〉

(Local)

〈e, E, S〉 ⇓ 〈v, S′〉 l = E(x)

〈(:= x e), E, S〉 ⇓ 〈v, S′ + {l 7→ v}〉
(Assgn)

PSU CS558 W’13 LECTURE 3 c© 1994–2013 ANDREW TOLMACH 37

EVALUATION RULES (2)

〈e1, E, S〉 ⇓ 〈v1, S
′〉 v1 6= 0 〈e2, E, S′〉 ⇓ 〈v2, S

′′〉

〈(if e1 e2 e3), E, S〉 ⇓ 〈v2, S
′′〉

(If-nzero)

〈e1, E, S〉 ⇓ 〈0, S′〉 〈e3, E, S′〉 ⇓ 〈v3, S
′′〉

〈(if e1 e2 e3), E, S〉 ⇓ 〈v3, S
′′〉

(If-zero)

〈e1, E, S〉 ⇓ 〈v1, S
′〉 v1 6= 0 〈e2, E, S′〉 ⇓ 〈v2, S

′′〉

〈(while e1 e2), E, S′′〉 ⇓ 〈v3, S
′′′〉

〈(while e1 e2), E, S〉 ⇓ 〈v3, S
′′′〉

(While-nzero)

〈e1, E, S〉 ⇓ 〈0, S′〉

〈(while e1 e2), E, S〉 ⇓ 〈0, S′〉
(While-zero)

PSU CS558 W’13 LECTURE 3 c© 1994–2013 ANDREW TOLMACH 38

NOTES ON THE RULES

• The structure of the rules guarantees that at most one rule is applicable
at any point.

• The store relationships constrain the order of evaluation.

• If no rules are applicable, the evaluation gets stuck ; this corresponds
to a runtime error in an interpreter.

We can view the interpreter for the language as implementing a bottom-up
exploration of the inference tree. A function like

Value eval(Exp e, Env env) { }

returns a value v and has side effects on a global store such that

〈e, env, storebefore〉 ⇓ 〈v, storeafter〉

The implementation of eval dispatches on the syntactic form of e,
chooses the appropriate rule, and makes recursive calls on eval

corresponding to the premises of that rule.

Question: how deep can the derivation tree get?

PSU CS558 W’13 LECTURE 3 c© 1994–2013 ANDREW TOLMACH 39

