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GOALS OF THE COURSE

• Learn fundamental structure of programming languages.

• Understand key issues in language design and implementation.

• Increase awareness of the range of available languages and their uses.

• Learn how to learn a new language.

• Get a small taste of programming language theory.
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METHOD OF THE COURSE

• Fairly conventional survey textbook, with broad coverage of languages.

• Homework exercises involve programming problems in real languages.

• Most homework problems will involve modifying implementations of
“toy” languages that illustrate key features and issues.

• Exercises will use two modern languages: Python and OCaml .

• Between them, these languages illustrate many of the important
concepts in current language designs.
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NON-GOALS

• Teaching how to program.

• Teaching how to write significant programs in any particular
language(s).

• Surveying/cataloging the features of lots of different languages.

• Comprehensive coverage of programming paradigms (e.g., will skip
logic and concurrent programming material).

• Will mostly be concerned with interpreting abstract syntax for the toy
languages, and will spend very little time on parsing and code
generation. (Not a compiler course!)
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SOME LANGUAGES

What languages do you know?

FORTRAN, COBOL, (Visual) BASIC, ALGOL-60, ALGOL-68, PL/I, C,
C++, RPG, Pascal, Modula, Oberon, Lisp, Scheme, ML, Haskell, Ada,
Prolog, Goedel, Curry, Snobol, ICON, . . .

Don’t forget things like:

scripting languages: perl, tcl, Python, . . .

SQL, other database query languages.

spreadsheet expression languages

text processing languages, tex, awk, etc.

application-specific languages.
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“H IGHER-LEVEL” P ROGRAMMING LANGUAGES

Consider a simple (dumb) algorithm for testing primality.

In Python:

def isprime(n):

# return true if n has no divisor in interval [2,n-1]

for d in range(2,n):

if n % d == 0:

return False

return True
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“H IGHER-LEVEL” P ROGRAMMING LANGUAGES (2)

In OCaml (using a recursive function):

let isprime (n:int) : bool =

(* return true if n has no divisor in interval [2,n-1] *)

let rec no_divisor (d:int) : bool =

(* return true if n has no divisor in interval [d,n-1] *)

(d >= n) || ((n mod d <> 0) && no_divisor (d+1)) in

no_divisor 2
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In Intel X86 (32 bit) Assembler:

.globl isprime

isprime:

pushl %ebp ; set up procedure entry

movl %esp,%ebp

pushl %esi

pushl %ebx

movl 8(%ebp),%ebx ; fetch arg n from stack

movl $2,%esi ; set divisor d := 2

cmpl %ebx,%esi ; compare n,d

jge true ; jump if d >= n

loop: movl %ebx,%eax ; set n into ....

cltd ; ... dividend register

idivl %esi ; divide by d

testl %edx,%edx ; remainder 0?

jne next ; jump if remainder non-0

xorl %eax,%eax ; set ret value := false(0)

jmp done

next: incl %esi ; increment d

cmpl %ebx,%esi ; compare n,d

jl loop ; jump if d < n

true: movl $1,%eax ; set ret value := true(1)

done: leal -8(%ebp),%esp ; clean up and exit

popl %ebx

popl %esi

leave

ret
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HIGH-LEVEL LANGUAGES : GENERAL CHARACTERISTICS

• Complex Expressions (Arithmetic, Logical, ...)

• Structured Control Operators (Loops, Conditionals, Cases)

• Composite Types (Arrays, Records, etc.)

• Type Declarations and Type Checking

• Multiple storage classes (global/local/heap)

• Procedures/Functions, with private scope, maybe first-class

• Maybe high-level control mechanisms (Exceptions, Back-tracking, etc.)

• Maybe abstract data types, modules, objects, etc.
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MACHINE CODE CHARACTERISTICS

• Low-level machine instructions to implement operations.

• Control flow based on labels and conditional branches.

• Explicit locations (e.g. registers) for values and intermediate results.

• Explicit memory management (e.g., stack management for procedures).
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LANGUAGE IMPLEMENTATION

Ultimately, we want to execute programs on real hardware.

Two classic approaches:

• A compiler translates high-level language programs into a lower-level
language (e.g. machine code).

• An interpreter is a fixed program that can read (the representation of)
an arbitrary high-level program and execute it.

Very generally, compilers can generate code that runs faster than
interpreted code, but interpreters are quicker and easier to write and
maintain than compilers.

Interpreters are also easier to understand , which is why we will be using
them for the toy languages in this course. But interpreters can also
obscure important machine-level implementation issues, so we will also
sometimes consider compiled code.
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STACK MACHINES

A stack machine is a simple architecture based on a stack of operand
values.

• All machine instructions pop their operands from the stack, and push
their results back onto the stack

• This makes instructions very simple, becuase there’s no need to
specify operand locations.

• This architecture is often used in abstract machines, such as the Java,
Python, or OCaml virtual machines. (Most real machines use
register-based architectures instead.)

• Often compile from high-level language to stack machine byte code
which is then interpreted (or perhaps compiled further to machine code).
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STACK MACHINE EXAMPLE

Here’s the instruction set for a very simple stack machine:

Instruction Stack Before Stack After

CONST i s1 ... sn i s1 ... sn

LOAD x s1 ... sn Vars[x] s1 ... sn

STORE x s1 ... sn s2 ... sn

PLUS s1 s2 s3 ... sn (s1+s2) s3 ... sn

MINUS s1 s2 s3 ... sn (s2-s1) s3 ... sn

Note that STORE x also sets Vars[x] = s1.
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STACK MACHINE EXAMPLE (2)

And here’s a stack machine program corresponding to the simple state-
ment c = 3 - a + (b - 7):

CONST 3

LOAD a

MINUS

LOAD b

CONST 7

MINUS

PLUS

STORE c

Is this code sequence unique?

This illustrates the expressiveness of high-level expressions compared
to machine code.
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PROGRAMMING LANGUAGE CLASSIFICATIONS

Programming paradigms

• Imperative (including object-oriented)

• Functional

• Logic

• Concurrent/Parallel

• Scripting

Programming Contexts

Programming “in the Small”
• Expressions
• Structured Control Flow
• Structured Data
• Types

Programming “in the Large”
• Modules and Separate Compilation
• Code Re-use; Polymorphism
• Object-oriented Programming
• Types
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SOME THEMES IN LANGUAGE DESIGN

Expressiveness

• Vocabulary of operations, expressions, statements, etc.

• Support for abstraction, extensibility

Efficiency

• Mapping to the hardware

Program Correctness

• Types

• Reasoning about program behavior
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LANGUAGE DESCRIPTION AND DOCUMENTATION

For programmers, compiler-writers, and students . . .

Syntax (Easy)

What do programs look like?

• Grammars; BNF and Syntax Charts

Semantics (Hard)

What do programs do?

• Informal

• Formal: Operational, Denotational, Axiomatic

Learning about a Language

• Reference Manuals, User Guides, Texts and tutorials

• Experimentation
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SYNTAX : CONCRETE & A BSTRACT

• Language syntax describes the legal form and structure of programs

• Concrete syntax describes is what a program looks like on the page or
screen

• Abstract syntax describes the essential contents of a program as it
might be represented internally (e.g. by an interpreter or compiler)

• In this course, we won’t worry much about concrete syntax, but it is
worth some brief discussion

• (And we will need to choose some concrete syntax for the programs we
interpret)

• Syntax is specified by a grammar .
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CONTEXT-FREE GRAMMARS

• Used for description, parsing, analysis, etc.

• Based on recursive definition of program structure.

• A grammar is defined by:

• a set of terminal symbols (strings of characters)

• a set nonterminal variables, which represent sets of terminals

• a set of production rules that map nonterminals to strings of
terminals and non-terminals

• The language defined by a grammar is the set of strings of terminals
that can be derived by applying production rules, starting from a specified
nonterminal.

• Grammars have rich theory with connections to automatic parser
generation, push-down automata, etc.

• Many possible representations, including BNF (Backus-Naur Form),
EBNF (Extended BNF), syntax charts, etc.
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BNF

BNF was invented ca. 1960 and used in the formal description of
Algol-60. It is just a particular notation for grammars, in which

• Nonterminals are represented by names inside angle brackets, e.g.,
<program>, <expression>, <S>.

• Terminals are represented by themselves, e.g., WHILE,(, 3. The empty
string is written as <empty>.

BNF Example...
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<program> ::= BEGIN <statement-seq>

END

<statement-seq> ::= <statement>

<statement-seq> ::= <statement> ;

<statement-seq>

<statement> ::= <while-statement>

<statement> ::= <for-statement>

<statement> ::= <empty>

<while-statement> ::= WHILE <expression>

DO <statement-seq> END

<expression> ::= <factor>

<expression> ::= <factor> AND <factor>

<expression> ::= <factor> OR <factor>

<factor> ::= ( <expression> )

<factor> ::= <variable>

<for-statement> ::= . . .

<variable> ::= . . .
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EBNF

EBNF is (any) extension of BNF, usually with these features:

• A vertical bar, |, represents a choice,

• Parentheses, ( and ), represent grouping,

• Square brackets, [ and ], represent an optional construct,

• Curly braces, { and }, represent zero or more repetitions,

• Nonterminals begin with upper-case letters.

• Non-alphabetic terminal symbols are quoted, at least when necessary
to avoid confusion with the meta-symbols above.
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EBNF EXAMPLE

Program ::= BEGIN Statement-seq END

Statement-seq ::= Statement

[ ‘;’ Statement-seq ]

Statement ::= [ While-statement | For-statement ]

While-statement ::= WHILE Expression

DO Statement-seq END

Expression ::= Factor { (AND | OR) Factor }

Factor ::= ‘(’ Expression ‘)’ | Variable

For-statement ::= . . .

Variable ::= . . .
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SYNTAX ANALYSIS (PARSING)

Parser recognizes syntactically legal programs (as defined by a
grammar) and rejects illegal ones.

• Successful parse also captures hierarchical structure of programs
(expressions, blocks, etc.).

• Convenient representation for further semantic checking (e.g.,
typechecking) and for code generation.

• Failed parse provides error feedback to the user indicating where and
why the input was illegal.

Any context-free language can be parsed by a computer program, but
only some can be parsed efficiently . Modern programming languages
can usually be parsed efficiently.
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LEXICAL ANALYSIS

Programming language grammars usually take simple tokens rather than
characters as terminals. Converting raw program text into token stream is
job of the lexical analyzer , which

• Detects and identifies keywords and identifiers.

• Converts multi-character symbols into single tokens.

• Handles numeric and string literals.

• Removes whitespace and comments.

PSU CS558 W’13 LECTURE 1 c© 1994–2013 ANDREW TOLMACH 25

PARSE TREES

Graphical representation of a derivation.

Given this grammar:

expr → expr + expr | expr * expr | (expr) | -expr | id

Example tree for derivation of
sentence -(x + y) :

expr

�
��

-

❅
❅❅

expr

�
�

( expr

��
expr

id x

+

❅❅
expr

id y

❅
❅

)

Each application of a production corresponds to an internal node,
labeled with a non-terminal .

Leaves are labeled with terminals , which can have attributes (in this
case the specific identifier name).

The derived sentence is found by reading leaves (or “fringe”) left-to-right.
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AMBIGUITY

A given sentence in L(G) can have more than one parse tree.
Grammars G for which this is true are called ambiguous .

Example: given the grammar on the last slide, the sentence

a + b * c

has two parse trees:
expr

��
expr

id a

+
❅❅

expr

��
expr

id b

*
❅❅

expr

id c

expr

��
expr

��
expr

id a

+
❅❅

expr

id b

*
❅❅

expr

id c

We may think of the left tree as being the “correct” one, but nothing in the
grammar says this.

To avoid the problems of ambiguity, we can:

• Rewrite grammar; or

• Use “disambiguating rules” when we implement parser for grammar.
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AMBIGUITY IN ARITHMETIC EXPRESSIONS

To disambiguate a grammar like

E → E + E | E - E | E * E | E / E | (E) | id

we need to make choices about the desired order of operations.

For any expression of the form X op1 Y op2 Z we must define:

• Precedence - which operation (op1 or op2) is done first?

• Associativity - if op1 and op2 have the same precedence, then does Y

“associate” with the operator on the left or on the right?

In other words, we need rules to tell us whether the expression is
equivalent to (X op1 Y) op2 Z or to X op1 (Y op2 Z).

The “usual” rules (based on common usage in written math) give * and /

higher precedence than + and -, and make all the operators
left-associative.

So, for example, a - b - c * d is equivalent to (a - b) - (c * d).
But this is a matter of choice when defining the language.
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REWRITING ARITHMETIC GRAMMARS

One way to enforce precedence/associativity is to build them into the
grammar using extra non-terminals, e.g.:

factor → (expr) | id

term → term * factor | term / factor | factor

expr → expr + term | expr - term | term

Example: a * b - c + d * e e

�
�

e

��
e

t

��
t

f

id a

*
❅❅

f

id b

-

❅❅
t

f

id c

+

❅
❅

t

��
t

f

id d

*

❅❅
f

id e
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L IMITATIONS OF CONTEXT-FREE GRAMMARS

Context-free grammars are very useful for describing the structure of
programming languages and identifying legal programs.

But there are many useful characteristics of legal programs that cannot
be captured in a grammar (no matter how clever we are).

For example, in many programming languages, every variable in a legal
program must be declared before it is used. But this property cannot be
captured in a grammar.

So checking legality of programs typically requires more than syntax
analysis. Most compilers use a secondary “semantic” analysis phase to
check non-syntactic properties, such as type-correctness. Of course,
sometimes illegal programs cannot be detected until runtime.
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PARSE TREES VS. ABSTRACT SYNTAX TREES

Parse trees reflect details of the concrete syntax of a program, which is
typically designed for easy parsing.

For processing a language, we usually want a simpler , more abstract
view of the program. (No firm rules about AST design: matter of taste,
convenience.)

Simple concrete grammar:

S → while ’(’ E ’)’ do S | ID ’=’ E

E → E ’+’ T | E ’-’ T | T

T → ID | NUM | ’(’ E ’)’
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while (n) do n = n - (b + 1)

S

✟✟✟✟✟✟✟✟

while

✚
✚

✚
✚
✚✚

(

✂
✂
✂
✂

E

T

ID n

❇
❇
❇
❇

)

❩
❩

❩
❩

❩❩

do

❍❍❍❍❍❍❍❍

S

�
�

ID n =

❅
❅

E

��

E

T

ID n

-

❅❅
T

��
( E

E

T

ID b

+ T
NUM 1

❅❅
)
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PARSE TREES VS. ABSTRACT SYNTAX TREES (2)

Possible abstract syntax tree for while (n) do n = n - (b + 1)

While

�
��

Id n

❅
❅❅
Assgn n

Sub

�
�

Id n

❅
❅

Add

��
Id b

❅❅
Num 1

Note that tree nodes may have attributes (such as the name of an Id)
and/or sub-trees .
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TREE GRAMMARS

AST’s obey a tree grammar . Rules have form

label : kind → (attr1 . . . attrm) kind1 . . . kindn

where the LHS classifies the possible node labels into kind s, and the
RHS describes the label’s atomic attributes (if any, in parentheses) and
the kinds of its subtrees (if any).

Example:

While : Stmt → Exp Stmt
Assgn : Stmt → (string) Exp
Add : Exp → Exp Exp
Sub : Exp → Exp Exp
Id : Exp → (string)
Num : Exp → (int)
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ABSTRACT SYNTAX CAPTURES THE ESSENCE

Concrete syntax is important for usability, but fundamentally superficial.
The same abstract syntax can be used to represent many different
concrete syntaxes.

Examples:

• C-like:

while (n) do n = n - (b + 1);

• Fortran-like:

do while(n .NE. 0)

n = n - (b + 1)

end do
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CONCRETE SYNTAX EXAMPLES (2)

• COBOL-like:

PERFORM 100-LOOP-BODY

WITH TEST BEFORE

WHILE N IS NOT EQUAL TO 0

100_LOOP-BODY.

ADD B TO 1 GIVING T

SUBTRACT T FROM N GIVING N

• Use Chinese keywords in place of while and do.

• Use a graphical notation.

PSU CS558 W’13 LECTURE 1 c© 1994–2013 ANDREW TOLMACH 36



AST’ S IN JAVA

AST’s have recursive structure and irregular shape and size, so it makes
sense to store them as heap data structures using one record for each
tree node.

In Java, heap records are objects . We define classes corresponding to
the various kinds and a subclass for each label, e.g.

abstract class Stmt { }

class While extends Stmt {

Exp test; Stmt body;

}

class Assgn extends Stmt {

String lhs; Exp rhs;

}

abstract class Exp { }

class Add extends Exp {

Exp left; Exp right;

}

class Num extends Exp {

int value;

}

Nodes are created by constructor calls, e.g., Exp e = new Num(42).
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AST’ S IN PYTHON

In Python, heap records are again objects, and we define classes corre-
sponding to the various labels, e.g.

class While:

def __init__(self,test,body):

self.test = test

self.body = body

class Asgn:

def __init__(self,lhs,rhs):

self.lhs = lhs

self.rhs = hrs

class Add:

def __init__(self,left,right):

self.left = left

self.right = right

class Num:

def __init__(self,num):

self.num = num

Nodes are again created by invoking constructors, e.g. e = Num(42).
But note that the type relationships among the classes and fields are lost,
since Python doesn’t have static types.
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AST’ S IN OCAML

In Ocaml, we can use algebraic datatypes to define a suitable set of
variants, e.g.:

type stmt = While of exp * stmt

| Assgn of string * exp

| ...

and exp = Add of exp * exp

| ...

| Num of int

These declarations also define constructors, so we can say, e.g.,
e:exp = Num(42).
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HEAP STRUCTURE

All these approaches generate roughly the same heap structures, e.g. for

while (n) do n = n - (b + 1)

WHILE

ID ASSGN

SUB

ID ADD

ID NUM
1b

n

nn

Stmt

Exp Stmt

Exp

Exp Exp

Exp Exp
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EXTERNAL REPRESENTATION OF ASTS

Although ASTs are designed as an internal program representation, it
can be useful to give them an external form too that can be read or
written by other programs or by humans.

Any external representation of ASTs must accurately reflect the internal
tree structure as well as the “fringe” of the tree. Can’t use tree grammar
to parse, since it is typically ambiguous!

One approach (deriving from the programming language LISP) is to use
parenthesized prefix notation to represent trees.

Each node in the tree is represented by the expression

( label attr1 . . . attrm child1 childn )

where label is the node label, the attri are the label’s attributes (if any),
and the childi are the labels sub-trees (if any), each of which is itself a
node expression. To make things more readable, we might use
abbreviations for common labels, e.g., + for Add. We may also represent
simple leaf nodes by their bare attributes, e.g., use 3 for (Num 3), as long
as no confusion can arise.
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EXTERNAL AST EXAMPLE

So the representation of our AST example could be

(While (Id n)

(Assgn n (- (Id n)

(+ (Id b)

(Num 1)))))

where the indentation is optional, but makes the representation easier
for humans to read. The BNF for this syntax can be given as:

<stmt> ::= (<While> <expr> <stmt>)

| (<Assgn> <name> <expr>)

<expr> ::= (+ <expr> <expr>)

| (- <expr> <expr>)

| <name>

| <int>

Concrete and abstract syntax are isomorphic.
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PARSING PARANTHESIZED PREFIX NOTATION

Note that this BNF description contains essentially the same information
as our AST internal datatype declarations (except for the descriptive field
names).

Parsing this representation is easy! Why?

• Everything is either an atom (keyword, symbol, numeric literal, etc.) or
a parenthesized list of atoms

• Each node in the AST corresponds to a list or atom.

• The first item in each list is always a symbol that identifies the node
type and implies the kind and number of the remaining things in the list.

• The lexical analyzer just needs to identify the atoms and list delimiters.
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