The role of environments
In scoping

Nested scopes

e Whenever scopes can be nested we have the
“feature” that a variable may occur more than
once in the same scope.

* Resolving that ambiguity is important

f X y — Which x does this
Iet X = 9 refer to

Iny + X

What value does (¥ 3 7) return?

Local functions

e This can also happen with local functions

y — 99 Whichydoesthis]
refer to
fTwy-=
let

gXxX=Yy +X

The role of the environment

* In our definitional interpreters, the
environment maps names to locations.

 To determine which one of a number of
possible binding sites a variable uses, we must
study how the environment is changed.

The fun-arg problem

e This problem is called the fun-arg problem
y = 99
fwy=

let g X =y + X

in gw

T 33 7

It’s resolution depends upon how the body of
functions (like g) are evaluated

Similar problem

We don’t need local functions to have this problem.

Which y does this
refer to

(global y 99)
(fun g (X) (+y X))
(fun T (w)

(local (y 3) (@ g w)))

(@ ¥ 33)

At definition site

Local scope

Function body
elab :: Def ZL i{ff“"mgs /442///

-> (Env (Env Addr, [Vname], Exp) , Env Addr, State)
-> 10 (Env (Env Addr, [Vname], Exp), Env Addr, State)

elab (FunDef f vs e) (funs,vars,state) =

return (extend f (vars,vs,e) funs, vars, state)
elab (GlobalDef v e) (funs,vars,state) =

do { (value,state?2) <- iInterpE funs vars state e
let (addr,state3) = alloc value stateZ2
return(funs, extend v addr vars,state3)}

At call site

run state (term@(At f args)) =
case lookUp funs T of
NotFound -> error ..
Found (vars2,formals,body) ->
do { when (length args /= length formals)
(error .)
; (vs,state2) <- iInterpList funs
vars state args
, let (pairs,stateld)
= bind formals vs state2
; (v,stated4) <- iInterpE funs
(push pairrs vars2)
state3 body
; return(v,state4) }

A closure

We call a function object that binds its free variables in
the scope of definition (rather than use) a closure.

Closures are key components in static scoping.

It is interesting that in functional languages, where
functions may return functions, variables may now
outlive their scope.

Who can give an example?
What does this imply about implementations?

	The role of environments�in scoping
	Nested scopes
	Local functions
	The role of the environment
	The fun-arg problem
	Similar problem
	At definition site
	At call site
	A closure

