
The role of environments 
in scoping 



Nested scopes 

• Whenever scopes can be nested we have the 
“feature” that a  variable may occur more than 
once in the same scope. 

• Resolving that ambiguity is important 
f x y = 
  let x = 9 
  in y + x 
 
What value does (f 3 7) return? 

Which x does this 
refer to 



Local functions 

• This can also happen with local functions 
 

y = 99 
f w y = 
  let g x = y + x 
  in g w 
 
f 33 7 

Which y does this 
refer to 



The role of the environment 

• In our definitional interpreters, the 
environment maps names to locations. 
 

• To determine which one of a number of 
possible binding sites a variable uses, we must 
study how the environment is changed. 



The fun-arg problem 

• This problem is called the fun-arg problem 
y = 99 
f w y = 
  let g x = y + x 
  in g w 
 
f 33 7 

It’s resolution depends upon how the body of 
functions (like g) are evaluated 
 



Similar problem 

We don’t need local functions to have this problem. 
 
(global y 99) 
(fun g (x) (+ y x)) 
(fun f (w) 
   (local (y 3) (@ g w))) 
   
(@ f 33) 

Which y does this 
refer to 



At definition site 
elab :: Def 
     -> (Env (Env Addr, [Vname], Exp) , Env Addr, State) 
     -> IO (Env (Env Addr, [Vname], Exp), Env Addr, State) 

 
elab (FunDef f vs e) (funs,vars,state) = 
  return ( extend f (vars,vs,e) funs, vars, state ) 
elab (GlobalDef v e) (funs,vars,state) = 
  do { (value,state2) <- interpE funs vars state e 
     ; let (addr,state3) = alloc value state2 
     ; return(funs, extend v addr vars,state3)} 

Local scope 

Formal args 
Function body 



At call site 
 run state (term@(At f args)) =  
     case lookUp funs f of 
        NotFound -> error … 
        Found (vars2,formals,body) ->  
          do { when (length args /= length formals) 
                    (error …) 
             ; (vs,state2) <- interpList funs  
                                 vars state args              
             ; let (pairs,state3)  
                      = bind formals vs state2   
             ; (v,state4) <- interpE funs  
                              (push pairs vars2)  
                              state3 body  
             ; return(v,state4) } 



A closure 

• We call a function object that binds its free variables in 
the scope of definition (rather than use) a closure. 
 

• Closures are key components in static scoping. 
 

• It is interesting that in functional languages, where 
functions may return functions, variables may now 
outlive their scope. 

• Who can give an example? 
• What does this imply about implementations? 

 


	The role of environments�in scoping
	Nested scopes
	Local functions
	The role of the environment
	The fun-arg problem
	Similar problem
	At definition site
	At call site
	A closure

