
On the Structure of Interpreters

Operational Semantics

• Operational semantics describe how a
language operates.

• Given by a set of inference rules.
• Use a step relation ⇓

syntax

Recursive
calls

parameters

result
state

Helper
relations

1. The state of the semantics are those things that appear on both
sides of the stepping relation

2. Inputs appear only on the left
3. Outputs appear on the right

State

• The state abstracts those things that change
over time as the program executes
– For example the heap

• The state might contain zero, one, or many
parts
– The heap, the stack, the current handlers etc.

Interpreters

• Interpreters have more detail than operational
semantics.

• They are always recursive over the syntax of the
language

• Some things are only inputs, because they remain
constant. E.g. the environment that maps names
to locations, since the location never changes

• The state appears as both an input and an
output. The output captures the change over
time

Example 1

• The interpreter for the stack machine from
HW1

• step:: Stack Int -> Instr -> Stack Int

syntax
state

Example 2

• The interpreter from HW3

interpE :: Env (Env Addr,[Vname],Exp)
 -> Env Addr
 -> State
 -> Exp
 -> IO(Value,State)

syntax

State result

inputs

Example 3

• The Exception machine from HW #4

interpE :: Env (Stack,[Vname],Exp)
 -> Env Address
 -> State
 -> Exp
 -> IO(Value,State)

data State
 = State Stack Heap
 | Exception State Fname [Value]

Here the State is much
more complicated, it even

comes in two modes:
Normal and Exceptional.
Normal states have two

components, a Stack and a
Heap

Operations on States
• Operations on states propagate exceptional state.

delta f g (State st hp) = State (f st) (g hp)
delta f g (Exception st fname vs) =
 Exception st fname vs

alloc :: Value -> State -> (Address,State)
alloc v state | exceptional state =
 (error "Exception State in alloc",state)
alloc v state = (HAddr addr,deltaHeap f state)
 where addr = length (heap state)
 f heap = heap ++ [(v)]

Threading
 run state (Add x y) =
 do { (v1,state1)<- interpE funs vars state x
 ; (v2,state2)<- interpE funs vars state1 y
 ; return(numeric "+" (+) v1 v2,state2) }

Special Casing the state
• The interpreter may do special things on certain kinds of

state

interpE funs vars state exp = traceG run
state exp where

 run (state@(Exception s f vs)) exp
 = return(Bad,state)
 run state (Int n)
 = return(IntV n,state)
 run state (Char c)
 = return(CharV c,state)
…

Summary

• The shape and operations on the State of an
interpreter can be used to encode many kinds
of language features.
– Assignment
– Allocation
– Exceptions
– Continuations

	On the Structure of Interpreters
	Operational Semantics
	Slide Number 3
	State
	Interpreters
	Example 1
	Example 2
	Example 3
	Operations on States
	Threading
	Special Casing the state
	Summary

