CS 558:

Programming Languages Practice Exam March 12, 2014

This is a practice. It has 5 questions. On the real exam you will be allowed one (8.5" x 11") page

of notes.

1. Short Answers (5 points each = 30 points total.).

(a)

(b)

Explain the difference between static and dynamic typing. List at least one real language
which uses each approach.

Explain the difference between over-riding a method and over-loading a function. List at
least one real language which uses each approach.

What makes a function "higher-order". What issues arises (in languages with higher order
functions) that requires some care when implementing higher-order functions?

What advantages does a two-space collector have over a mark-and-sweep collector. What
disadvantages does a two-space collector have over a mark-and-sweep collector.

What is a composite type? Give three examples.

Explain the differences between parametric polymorphism (found in languages like ML and
Haskell), and subtype polymorphism (found in languages like C++, Smalltalk, and Java).

2. Type Inference (7 points each = 21 points total).

Below we outline several type inference rules for a language similar to E7. Each rule is made
from one or more typing judgments (and other auxiliary judgments). A typing judgment has

the
r

following form.
Fe:t

Where I' is an environment mapping variable names to types. e is syntactic term of the language,

and

t is a type. A judgment states that the term e has type t in a given context I' (which tells

about the types of term variables that appear in €). We also have several auxiliary judgments.

e I'(v) = t, which states that the environment I" maps the term variable v to the type ¢.

e I'(x = t), describes an environment with the same behavior as I', except that it maps the

variable x to t. If z was already mapped to some type s in I', then this old mapping for =
is hidden in T'(z — t)

Example rules for function application and anonymous functions are given below.

r

Ef:(a—t)
I''Fz:a

T F (fa) ¢ (Mx)e) - (a.—> t)

Complete the following rules for pair creation, if-the-else, and while-loop.

I' b (pairaxy) : t

't (if ethenzelsey) : ¢t

I' b (vhileedox) : ¢

3. Modules (6 points each = 18 points).

Primary purpose of a Module System is to divide large programs into (somewhat) indepen-
dent sections, offering: (1) name space control, (2) an abstraction barrier, and (3) separate
compilation.

For each of these purposes, do three things: (a) Explain what it is. (b) Give examples or reasons
why a programmer might want such control. (c) List issues that need to be addressed when
implementing this purpose.

e Name space control.
e Abstraction Barrier.

e Separate compilation .

4. Small programs in language E8 (8 points each = 16 points total).

Using the object oriented language E8, write object definitions for the following constructs. For
each construct, provide 1 method that might be useful on such a construct As an example I have
provided the object definition for lists, and provided the method length.

(val list
(object
(def nil
(object (method length () 0)))

(method cons (y x)
(object (def head y)
(def tail x)
(method length () (x.length.+ 1))))

))

(a) A data structure representing arithmetic expressions. There are 4 kinds of arithmetic
expressions. Variables (like z), Constants (like 3), Additions (like (z + 5)) and Negations
(like (—6)).

(b) A data structure for 2-3-Trees. A 2-3-Tree has three forms. It is empty, in which case it
stores no data and no sub trees. It is a Node2, in which case it stores 1 Integers and 2 sub
trees. t is a Node3, in which case its stores 2 Integers and 3 sub trees.

5. Language Types and Parameter Passing. (15 points total)

We have seen three different types of languages: imperative, functional, and object oriented.
We have studied many forms of parameter passing mechanisms such as: call by value, call be
reference, call by copy return, and call by name. It is a fact that some parameter passing
mechanisms are more widely used in some types of languages than others. Discuss why this is
so. Use examples where appropriate. Use only the space provided on this page. Think carefully
about what you want to say. Short concise answers that get to the important issues will get
more credit than long rambling ones.

