
Garbage Collection

Terminology

• Heap – a finite pool of data cells, can be
organized in many ways

• Roots - Pointers from the program into the Heap.
– We must keep track of these.
– All pointers from global varaibles
– All pointers from temporarys (often on the stack)

• Marking – Tracing the live data, starting at the
roots. Leave behind a “mark” when we have
visited a cell.

Things to keep in mind

• Costs – How much does it cost as function of
– All data
– Just the live data

• Overhead – Garbage collection is run when we
have little or no space. What space does it
require to run the collector?

• Complexity – How can we tell we are doing
the right thing?

Structure of the Heap

Things to note in a Mark and sweep
collector

The Freelist
The Roots
Links from function closures
Links from data (like pair or list)
Constants

Structure of the Heap

(fun f (x) (+ x 7))
(val x 45)
(val y

(let (val x 6)
(val y 2)

in (\ (a)
(+ x (+ y a)))))

(val z (pair 7 'c'))

Changes in the heap
• Intermediate result computation

– (@ f (fst z))
• Assignment to things
• Garbage collection

Changes in the heap
• Intermediate result

computation
• Assignment to things

– (:= y (pair 44 ‘a’))
• Garbage collection

Garbage Collection

Mark and Sweep
• Cells have room for several things beside data

data HCell a = Cell { mark::(IORef Bool)
, key :: Int
, payload :: IORef a
, allocLink:: IORef (HCell a)
, allLink:: HCell a }

| NullCell

• All cells start linked together on the free list
• Allocation takes 1 (or more cells) from the free list
• Garbage collection has two phases

– Mark (trace all live data from the roots)
– Sweep (visit every cell, and add unmarked cells to free list)

Mark phase (turns cells red in this picture).

Where do links into the heap reside?

• In the environment
interpE :: Env (Range Value) -- the variables in scope

-> State -- the heap
-> Exp -- exp to interpret
-> IO(Value,State)

• Inside data values
data Value
= IntV Int
| CharV Char
| ConV String Int (Range Value)
| FunV Vname (Env (Range Value)) [Vname] Exp

Mark a cell
markCell markV NullCell = return NullCell
markCell markV (cell@(Cell m id p l1 l2)) =

do { b <- readIORef m; help b }
where help True = return cell

help False =
do { writeIORef m True

; v <- readIORef p
; v2 <- markV

(markRange markV) v
; writeIORef p v2
; return cell}

Sweeping through memory
sweep (H all free) NullCell = return (H all free)
sweep (H all free) (c@(Cell m id p l more)) =
do { b <- readIORef m

; if b then do { writeIORef m False
; sweep (H all free) more }

else do { -- link it on the free
writeIORef l free

; sweep (H all c) more }}

Mark phase (turns cells red in this picture).

Two space collector

• The heap is divided into two equal size regions
• We allocate in the “active” region until no more

space is left.
• We trace the roots, creating an internal linked list

of just the live data.
• As we trace we compute where the cell will live in

the new heap.
• We forward all pointers to point in the new

inactive region.
• Flip the active and inactive regions

A heap Cell

data HCell a =
Cell { mark :: Mutable Bool

, payload :: Mutable a
, forward :: Mutable Addr
, heaplink:: Mutable Addr
, showR:: a -> String }

The Heap

data Heap a =
Heap
{ heapsize :: Int
, nextActive :: Addr
, active :: (Array Int (HCell a))
, inactive:: (Array Int (HCell a))
, nextInActive:: Mutable Addr
, liveLink:: Mutable Addr }

(val tim (+ 1 2))
(fun h (x) (+ x tim))

(fun map (f xs) (if (ispair xs)
(pair (@ f (fst xs))

(@ map f (snd xs)))
xs))

(fun plus1 (x) (+ x 1))

(val g (@map plus1))

(val ans (@g (pair 1 (pair 2 (pair 3 0)))))

in

ans { should yield (2.(3.(4.0))) }

(val tim (+ 1 2))
(fun h (x) (+ x tim))

(fun map (f xs) (if (ispair xs)
(pair (@ f (fst xs))

(@ map f (snd xs)))
xs))

(fun plus1 (x) (+ x 1))

(val g (@map plus1))

(val ans (@g (pair 1 (pair 2 (pair 3 0)))))

in

ans { should yield (2.(3.(4.0))) }

markAddr :: (GCRecord a) -> Addr -> IO Addr
markAddr (rec@(GCRec heap markpay showV)) index = mark cell

where cell = active heap ! index
nextFreeInNewHeap = nextInActive heap
markedList = liveLink heap
mark (Cell m payld forward reachable showr) =

do { mark <- readIORef m
; if mark

then do readIORef forward
else do {

-- Set up recursive marking
; new <- fetchAndIncrement nextFreeInNewHeap
; next <- readIORef markedList
; writeIORef markedList index

-- Update the fields of the cell, showing it is marked
; writeIORef m True
; writeIORef forward new
; writeIORef reachable next

-- recursively mark the payload
; v <- readIORef payld
; v2 <- markpay (markRange rec) v

-- copy payload in the inactive Heap with
-- all payload pointers relocated .
; writeIORef (payload ((inactive heap) ! new)) v2
-- finally return the Addr where this cell will be relocated to.
; return new }}

Kinds of collectors

• Mark and sweep
• Two space collectors
• Relocating collectors
• Reference counting collectors
• Generational collectors

Reference counting collectors

• Every cell contains a reference count.
• It is incremented whenever a new pointer is

added to a cell, and decremented whenever a
pointer is changed from pointing at the cell to
some other cell.

• Cells whose reference counts drop to zero are
garbage and are reclaimed.

Reference Counting
• Advantages

– Simple
– Garbage is collected

incrementally when it
becomes free

• Disadvantages
– Circular structures are

never collected
– No upper bound on

performing a pointer
operation. (A cell may
become free, and then all
the cells it points to must
be decremented, and they
may become free)

– Live cells become
fragmented in memory
(little spatial locality)

Generational Collectors

• Assumptions
– Most newly allocated cells become garbage

quickly
– Cells that survive 1 or 2 collections tend to be long

lived
– Old cells seldom (if ever) point to newer cells.
– No need to spend time tracing pointers to old cells

as one can assume that they are still reachable

Strategy

• Divide memory into (different sized) regions.
• Each region holds cells of approximately the same age.
• Allocate cells in the newest region (usually relatively

small, often called the nursery)
• When space in the newest region runs out, collect cells

in only that region
– Only trace the roots into the newest region
– Assume everything in older regions is reachable

• Special code to handle pointers from old regions to newer regions
– Collect reachable cells in the newest region and promote

them to an older region.

Program Roots

Forward
pointers
are rare

backward
pointers
don’t need
to be traced

Most garbage is in the newest
region.
Only backward pointers within
the collecting region need to be
traced.
Forward pointers into the
collecting region must be handled
just like program roots

Generational

Advantages
• Small collection times

– Tracing only the live data
– In only a (relatively small)

region
– No need to touch

unreachable cells
– Compacts live cells for better

special locality

Disadvantages
• Code can be complex
• Many forward pointers can

wreck the otherwise good
performance

Other issues

• Concurrent Collection
– Separate processes
– Race conditions
– Approximate collection can be liveable

• Finalization
– When an object becomes garbage, it may free up

other cells. Sometimes this can be done
automatically, but other time specialized
knowledge is needed. Finalizers allow
programmers to add this knowledge

Overall Advantages of Garbage collectors

• Relieves programmers of an error prone task
• Removes dangling pointers
• Stops memory leaks
• Avoids “double frees”

– Freeing a cell already freed (and subsequently re-
allocated)

• Efficient implementation of “persistent” data
structures
– immutable data structures, can keep around old

versions in case they are needed

Overall Disadvantages

• Stop-the-world mentality
– At any time the system may pause for GC

• Timing and duration of GC times is
unpredicatable

• Unpredictable performance of the same code
on the same data

Comparisons

• Mark and trace is simple but can have long
pauses. Tracing times are proportional to
memory size

• Reference Count systems are simple but can’t
deal with cyclic structures, and all pointer
manipulation operations can have unbounded
upper limits

• Two space collectors have times proportional to
live memory. Can compact memory for better
spatial locality, but use twice as much space.

Comparisons continued

• Generational collectors can have the smallest
pause times (proportional to live memory that is
traced). Compact memory. With small nurserys
don’t have as much spatial overhed as two space
collectors.

• Concurrent collectors. Run continuously. Code
complicated to deal correctly with race
conditions. Safe to leave some garbage
uncollected if one can collect it later (when race
conditions no longer apply).

	Garbage Collection
	Terminology
	Things to keep in mind
	Structure of the Heap
	Structure of the Heap
	Changes in the heap
	Changes in the heap
	Garbage Collection
	Mark and Sweep
	Slide Number 10
	Where do links into the heap reside?
	Mark a cell
	Sweeping through memory
	Slide Number 14
	Slide Number 15
	Two space collector
	A heap Cell
	The Heap
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Kinds of collectors
	Reference counting collectors
	Reference Counting
	Generational Collectors
	Strategy
	Slide Number 29
	Generational
	Other issues
	Overall Advantages of Garbage collectors
	Overall Disadvantages
	Comparisons
	Comparisons continued

