Chapter 6 Reading Discussion

Chapter 6 (pp 217-287)
Control Flow

• Without consulting the text or your notes
 – Work in groups of 3
 – List as many control flow mechanisms as you can remember
 – What language paradigm
 • Declarative
 • Imperative
 • Logical
 Are they sometimes associated with?

• Time 1 minute
Order of evaluation

• Without consulting the text or your notes
 – Work in groups of 3

• List
 – Benefits
 – Problems

If order of evaluation of sub expressions is not specified.
Assignments

• Without consulting the text or your notes
 – Work in groups of 3
 – Issues
 • L-value v.s. r-value
 • References and pointers
 • Side effect causing functions
 • Boxing
 • Expressions v.s. commands
 • initialization
 – Give an example that illustrates why the issue is important
Precedence v.s. order of evaluation

- Consider $x * y + z$
- When would z be evaluated first?
 1. $(+) \text{ associates to the left}$
 2. $(+) \text{ associates to the right}$
 3. $(*) \text{ binds tighter than } (+)$
 4. $(+) \text{ binds tighter than } *$
 5. The language evaluates sub expressions from left to right
 6. The language evaluates sub expressions from right to left
 7. The language specifies no order of evaluation
 8. $(+) \text{ is commutative}$

- Make a list of all conditions that must hold
- Could y ever be evaluated first?
Mathematical Laws

• True or False

• $x - y + z$

• Can be rearranged to be

• $(x + z) - y$
Short circuit evaluation

• Works in groups of 3
• Give an example where short circuit evaluation of (&&) logical conjunction makes code shorter.

• Can you think of one for logical disjunction?
Multiway case

• Work in groups of 3
• List as many considerations as you can think of that might be important to efficient implementation of multiway branches
Loops

• Kinds of looping constructs
 1. Enumerated loops
 2. Logical loops
 3. Use of iterators
 4. Mid test loops (break, exit, continue, etc.)
 5. Recursion

• Give a pair \((m, n)\) where construct \(m\) can simulate construct \(n\). Justify your answer with a sketch of an implementation.