
CS 558 Programming Languages Winter 2013 – Sample Mid-term Questions with Solutions

The questions on this sample exam are drawn from the mid-terms of previous offerings of this
course. Use this sample as a guide to the style of questions to expect, but not the precise topics
to be emphasized. (Also, some of these questions assume fairly detailed knowledge of Java, since
that language was formerly used heavily in the homeworks, rather than Python.) The actual exam
will have about seven questions.

The exam is open-book, open-notes; you can use any paper reference materials you wish. Com-
puters and other electronic aids are not permitted. You must work independently, and you may not
share reference materials with other students.

1. Consider the following program, written in Ocaml syntax.

let h (z) =
let a = z in
let f (x) = x + a in
let g (y) =

let a = 10 in
f (y + a) in

g (z - 10) in
h(0)

(a) What is the value of this expression assuming lexical scoping?

(b) What is the value of this expression assuming dynamic scoping?

Answer: (a) 0 (b) 10

1

2. Consider the following C program fragment:

void f() {
int a = 2;

}
int g() {

int b;
return b;

}
int h() {

f();
return g();

}

(a) According to the C language definition, it is undefined what result value is returned by h. Why?

(b) The code generated by gcc -O0 actually returns the result value 2 from h. Why might this happen?

(c) What would happen if this code were given to a Java compiler? (Assume these are member functions of
some class.)

Answer:

(a) The result of h is the result of g, which is the value of b, which was never initialized and is therefore
undefined.

(b) In the generated code, the stack location of b is the same as the location of local variable a in f.
The call to f sets this location to 2; the code in g reads this location and uses it as the value for b,
which is then returned. (Note: Without knowing what assembly code gcc generates, you can’t be sure
this is why the program behaves as it does, but it’s the most probable explanation.)

(c) A Java compiler would reject the program (during semantic analysis), because the use of b before
it has been defined violates the “definite assignment” property.

2

3. Consider the following grammar, where the non-terminals are {INT,+,*} and the start symbol is expr :

expr := ’+’ expr expr
| ’*’ expr expr
| INT

Is this grammar ambiguous or not? Give brief but convincing evidence for your answer.

Answer: This grammar is not ambiguous. To be ambiguous, a grammar must allow two different
parse trees, and hence two different left-most derivations, for the same input string. Therefore, at
some point in a left-most derivation, there must be choice of which rule to use to expand the left-most
non-terminal. But in this grammar, all the rules match a different initial symbol, so at most one rule
can ever be successfully applied at any given point in the input string. Hence the grammar must not
be ambiguous.

(Note: In general, it is quite hard to prove non-ambiguity except for very simple grammars like this
one; proving ambiguity (by exhibiting two different parse trees for a single input) is much easier.)

3

4. Consider the following OCaml program:

let f(x:int ref, y:int ref) : int ref =
if !x > !y then x else y

let g(x:int ref) : unit =
x := !x * 2

let a = ref 1
let b = ref 2
let main() : unit =

g(f(a,b));
print_int (!a + !b)

(a) What will be printed when main() is executed?

(b) Translate this program as closely as possible into either C or C++. Treat a and b as global variables.
(Note: If you choose C, you’ll need to use pointers. If you choose C++, you may use either pointers or
references, whichever you prefer.)

Answer: (a) 5 (b) Here’s a C solution (on the left) and a C++ solution using references (on the right):

#include <stdio.h> #include <iostream.h>
int *f (int *x, int *y) { int &f (int &x, int &y) {

if (*x > *y) if (x > y)
return x; return x;

else else
return y; return y;

} }
void g(int *x) { void g (int &x) {

*x = *x * 2; x = x * 2;
} }
int a = 1; int a = 1;
int b = 2; int b = 2;
main () { main() {

g(f(&a,&b)); g(f(a,b));
printf ("%d\n", a+b); cout << a+b << "\n";

} }

4

5. The GNU C compiler supports an extension to ANSI C called “statement expressions,” which allows any
compound statement to be treated an expression by enclosing it in parentheses. For example, we can write

#define maxint(a,b) ({ int a1 = (a), b1 = (b); a1 > b1 ? a1 : b1; })

Compare this to the more usual C definition

#define max(a,b) ((a) > (b) ? (a) : (b))

Give an example where these two macros behave differently, and explain why maxint is probably a better
definition?

Answer: Consider passing expressions that have side-effects. For example,

maxint(i++,j++)

expands to

({ int a1 = (i++); b1 = (j++); a1 > b1 ? a1 : b1;})

so i and j are each incremented just once. But

max(i++,j++)

expands to

((i++) > (j++) ? (i++) : (j++);)

so either i or j is incremented twice. The former is more likely to be what the user of the macro
expected to happen.

5

6. Control Statements

Consider a counted for loop statement, with the general form

for var := expfirst to explast by expstep do stmt

We can give the semantics for this statement form by giving its translation into lower-level constructs as
follows (where last,step,top and done are fresh names):

var := expfirst;
last := explast;
step := expstep;

top: if var > last goto done;
stmt;
var := var + step;
goto top;

done:

For example, according to this semantics, the program

for i := 1 to 10 by 2 do print i

would print 1,3,5,7,9.

(a) Describe what is printed by the following program, based on the given semantics:

j := 8;
i := 3;
for i := 1 to j step i do
begin

print i;
j := 5;

end;
print i;

(b) There are many plausible alternatives to the given semantics that make different choices about where and
when the bounds and step value get computed. Give such an alternative which would make the program in
part (a) prints 1,2,4,8. (Keep your modification as simple as possible.)

Answer: (a) 1, 2, 3, 4, 5, 6, 7, 8, 9. (b) Don’t evaluate explast and expstep into variables. Instead,
re-evaluate them each time around the loop:

var := expfirst;
top: if var > explast goto done;

stmt;
var := var + expstep;
goto top;

done:

6

7. Implementing Block Structure

Many languages support nested blocks that are not procedures, but have local variable declarations, such as
the following (valid in C/C++ or Java):

{ int i;
for (i = 1; i < n; i++) a[i] = i;

}

A simple way to implement storage for such a block is to allocate it an activation record just as for proce-
dures. Explain why that is not an efficient approach, and describe a better one. Consider what happens if a
function has several local blocks. You may wish to draw one or more simple diagrams.

Answer: Allocating an activation record wastes space, since the return address and old frame pointer
are not needed. It is simpler just to allocate space for the block’s locals at the end of the activation
record of the enclosing procedure. If multiple blocks are nested, the storage for the locals in each
is just concatenated. If multiple blocks are declared in parallel scopes (not nested), their locals can
overlap in the same storage.

7

8. Operational Semantics of Boolean Expressions

Consider a simple language including boolean expressions:

exp := ...
| ’(’ ’and’ exp exp ’)’
| ’(’ ’or’ exp exp ’)’

Short-circuit evaluation of boolean expressions works as follows: the left operand is always evaluated, but
the right operand is evaluated only if this is necessary to determine the overall value of the expression.

(Note: Most modern languages, including Java, Python, and OCaml, use short-circuit evaluation. For ex-
ample, evaluating the Java expression ((p != null) && p.b) can never cause a null pointer violation
when trying to dereference p, since p.b is only evaluated if p is non-null.)

Here are operational semantics rules, written in a style similar to that of lecture 3, that describe short-circuit
evaluation for or expressions.

〈e1, E〉 ⇓ 〈false, E′〉 〈e2, E′〉 ⇓ 〈v2, E′′〉
〈(or e1 e2), E〉 ⇓ 〈v2, E′′〉

(Or1)

〈e1, E〉 ⇓ 〈true, E′〉
〈(or e1 e2), E〉 ⇓ 〈true, E′〉

(Or2)

Write similar rules that describe short-circuit implementation of and expressions.

Answer:
〈e1, E〉 ⇓ 〈true, E′〉 〈e2, E′〉 ⇓ 〈v2, E′′〉

〈(and e1 e2), E〉 ⇓ 〈v2, E′′〉
(And1)

〈e1, E〉 ⇓ 〈false, E′〉
〈(and e1 e2), E〉 ⇓ 〈false, E′〉

(And2)

8

9. Axiomatic Semantics

Consider a language that includes while statements, assignment statements, and statement composition
(written begin S1; S2 end). Suppose that the usual proof rules (from lecture and homework) for these
statement types are valid for this language.

Suppose we add to the language a C/C++/Java-style for statement:

for (S1; E; S2) S3

The semantics of this statement are exactly equivalent to

begin
S1;
while E do begin S3; S2 end

end

Here is a valid triple describing the beheavior of a particular program fragment involving for:

{ x = c }
for (y := 0; x != 0; x := x - 1)

y := y + 1
{ y = c }

(a) Give the strongest proof rule you can for for statements. It should be strong enough to justify the
above triple. (Hint: The pre- and post-conditions mentioned in your rule should be built from three general
propositions P , Q, and R, as well as the expression E.)

(b) What happens when c < 0? Why doesn’t this make the above triple invalid?

Answer: (a)

{P} S1 {Q} {Q ∧ E} S3 {R} {R} S2 {Q}
--

{P} for (S1; E; S2) S3 {Q ∧ ¬ E}

(b) There are two reasonable answers. If we assume indefinitely large magnitude integers, then the
program will loop forever if c < 0. The assertion remains true in the sense of partial correctness:
it says that if the fragment terminates, then y = c; it says nothing in the case when the fragment
doesn’t terminate.

Alternatively, if we assume machine-like integers of fixed size, they will eventually “wrap around,”
and the fragment will terminate with y = c.

9

10. Errors

Consider the following Java code fragment.

static int foo(int i,int a[]) {
String s;
int j = i - i - 1;
if (a[j] > 2) then

s = s + "bar";
else

return 0;
}

Identify at least three language violations in this code. For each one, indicate whether it is a static error,
checked runtime error, or unchecked runtime error.

Answer: There are four violations:

1. The then keyword is not used in Java (static error).

2. Local variable s is used before being initialized (static error).

3. There is no return statement for the first branch of the if (static error).

4. Since j = -1, the reference a[j] will be out of bounds (checked runtime error).

Note that Java has no unchecked runtime errors.

10

