CS 457/557: Functional
Languages

From Trees to Type Classes

Mark P Jones
Portland State University

Trees:

@ There are many kinds of tree data structure.

@ For example:

data BinTree a = Leaf a

A

| BinTree a :”: BinTree a

deriving Show

@ The “deriving Show” part makes it possible for us
to print out tree values ...

@ Definition:
example :: BinTree Int
example =1 :: r

where 1 = p :*: g

HAE

Leaf 1 :": t

s :~: Leaf 2

Leaf 3 :": Leaf 4
Leaf 5 :”: Leaf 6

S

 »n Q T B
I

@ At the prompt:

Main> example

((Leaf 1 :*: (Leaf 5 :*: Leaf 6)) :": ((Leaf
3 :*: Leaf 4) :": Leaf 2)):": ((Leaf 3 :":
Leaf 4) :*: (Leaf 5 :": Leaf 6)) 3
Main>

Wouldn't it be nice ...

If we could view these trees in a graphical form

Mapping on Trees:

@ We can define a mapping operation on trees:

mapTree :: (a -> b) -> BinTree a -> BinTree b
mapTree f (Leaf x) = Leaf (f x)
mapTree £ (1 :”: r) = mapTree £ 1 :*: mapTree f r

@ This is an analog of the map function on lists; it
applies the function f to each leaf value stored in
the tree.

@ Example: convert every leaf value into a string:
Main> mapTree show example
((Leaf "1" :7: (Leaf "5" :~: Leaf

"6")) :*: ((Leaf "3" :*: Leaf "4”) :":
Leaf "2")) :”: ((Leaf "3" :*: Leaf
"4m")y :~: (Leaf "5" :7: Leaf "6"))
Main>

@ Example: add one to every leaf value:

Main> mapTree (1+) example

((Leaf 2 :*: (Leaf 6 :": Leaf 7)) :*: ((Leaf
4 :”: Leaf 5) :7: Leaf 3)):": ((Leaf 4 :":
Leaf 5) :*: (Leaf 6 :": Leaf 7))

Main>

@ Still not very pretty ...

Visualizing the Results:

If we could view these trees in a graphical form ...

Visualizing the Results:

If we could view these trees in a graphical form ...

Visualizing the Results:

... we could see that mapTree preserves shape

S

Gives insight to the laws:
mapTree id = id
mapTree (f . g) mapTree f . mapTree g

Graphviz & Dot:

@ Graphviz is a set of tools for visualizing graph and
tree structures

@ Dot is the language that Graphviz uses for
describing the tree/graph structures to be
visualized.

@ Usage: dot -Tpng file.dot > file.png

10

Example:

@ To describe (Leaf "a" :~: Leaf "b" :~: Leaf "c"):
digraph tree {

"1" [label=""1];

' [label=""];

' [label="a"];

-> "gn;

' [label="b"]; c °

-> "5

' [label="c"];

g =N w NN

11

General Form:

A dot file contains a description of the form
digraph name { stmts } where each stmt is either

@ node_id [label="text"];
constructs a node with the specified id and label.

€ node_id -> node_id;
constructs an edge between the specified pair of
nodes.

[Actually, there are many more options than this!]
12

From BinTree to dot:

How can we convert a BinTree value into a dot file?
For simplicity, assume a BinTree String input.

Labels:
@ Label leaf nodes with the corresponding strings
@ Label internal nodes with the empty string

Node ids:
¥ What should we use for node ids?

13

Paths:

Every node can be identified by a unique path:
@ The root node of a tree has path []
@ The nth child of a node with path p has path (n:p)

type Path = [Int]
type Nodeld = String

:: Path -> Nodeld
- Il\llll ++ ShOW p ++ ll\llll

showPath
showPath p

Add “quotes” to
avoid confusing 14
Graphviz tools

Example:

15

Actual dot code:

@ To describe (Leaf "a" :~: Leaf "b" :~: Leaf "c"):

digraph tree {
" [] n [label:""] ,. ‘
mo=> "y

11" [label=""];

11" -> "[1,1]";

1,11" [label="a"];
1" -> "[2,1]1";
2
]
2

, 11" [label="b"];
" _> "w [2} H;
1" [label="c"];

"l
[
[
[
"l
[
[
[

}
16

Capturing “Tree"-ness:

subtrees :: BinTree a -> [BinTree a]
subtrees (Leaf x) = []

(1, r]

subtrees (1 :": r)

nodelLabel
nodeLabel (Leaf x) = x
nodelLabel (1 :*: r) = ""

:: BinTree String -> String

17

Trees -> dot Statements:

nodeTree : Path -> BinTree String -> [String]
nodeTree p t
= [showPath p ++ " [label=\""

++ concat (zipWith (edgeTree p) [1l..] (subtrees t))

++ nodeLabel t ++ "\"]"

edgeTree : Path -> Int -> BinTree String -> [String]

edgeTree p n c

= [showPath p ++ " -> "
++ nodeTree p' c

++ showPath p']

where p' = n : p

18

1

A Top-level Converter:

toDot :: BinTree String -> IO ()
toDot t = writeFile "tree.dot"
("digraph tree {\n"
++ semi (nodeTree [] t)
++ "}\n")
where semi = foldr (\1 1ls -> 1 ++ ";\n" ++ 1s) "”

Now we can generate dot code for our example tree:

Main> toDot (mapTree show example)

Main> !dot -Tpng tree.dot > ex.png

What About Other Tree Types?

data LabTree 1 a = Tip a
| LFork 1 (LabTree 1 a) (LabTree 1 a)

data STree a = Empty
Split a (STree a) (STree a)

data RoseTree a = Node a [RoseTree a]

data Expr = Var String
IntLit Int

Plus Expr Expr

Mult Expr Expr

Main> Can I also visualize these using Graphviz?
19 20
Higher-Order Functions: Adding the Parameters:
L] L]
Essential tree structure is captured using the nodeTree' lab sub p t
subtrees and nodeLabel functions. = [showPath p ++ 7 [label=\"" 4+ lab t ++ "\"]"]
++ concat (zipWith (edgeTree' lab sub p) [1..] (sub t)
What if we abstract these out as parameters?
edgeTree' lab sub p n c
nodeTree' sro (b —> String) > = [showPath p ++ -> ++ showPath p']
++ nodeTree' lab sub p' c
(t -> [t]) -> -
where p' = n : p
Path -> t -> [String]
toDot' :: (t -> String) -> (t -> [t]) -> t -> IO ()
' . . toDot' lab sub t
edgeTree (> Strlng) - = writeFile "tree.dot”
(t -> [t]) -> ("digraph tree {\n” ++ semi (nodeTree' lab sub [] t) ++ "}\n")
Path -> Int -> t -> [String] where semi = foldr (\1 1ls -> 1 ++ ";\n" ++ 1ls) ""
21 22
Alternative (Local Definitions): Specializing to Tree Types:
L] L
toDot "' (¢t -> String) -> (t -> [t]) -> t -> IO () toDotBinTree = toDot' lab sub
toDot'' lab sub t where lab (Leaf x) = x
= writeFile "tree.dot" lab (1 :%: r) = "n
("digraph tree {\n" ++ semi (nodeTree' [] t) ++ "}\n") sub (Leaf x) = []
where
sub (1 :*: r) = [1, r]
semi = foldr (\1 1ls -> 1 ++ ";\n" ++ 1ls) "”
toDotLabTree = toDot' lab sub
nodeTree' p t where lab (Tip a) = a
= [showPath p ++ " [label=\"" ++ lab t ++ "\"]"] lab (LFork s 1 r) = s
++ concat (zipWith (edgeTree' p) [1l..] (sub t)) sub (Tip a) = []
sub (LFork s 1 r) = [1, r]
edgeTree' p n c
= [showPath p ++ " -> " ++ showPath p'] ++ nodeTree' p' c toDotRoseTree = toDot' lab sub
where p' = n : p
where lab (Node x cs) = x
23 sub (Node x cs) = cs 24

... continued:

toDotSTree = toDot' lab sub
where lab Empty = ""

lab (Split s 1 r) = s

sub Empty = []

sub (Split s 1 r) = [1, r]

toDotExpr = toDot' lab sub
where lab (Var s) = s
IntLit n) = show n

Plus 1 r) = "+"

, r] 25

Example:

toDotRoseTree
(Node "a" [Node "b" [1],
Node "c" [],
Node "d" [Node "e" []]])

26

Example:

toDotExpr (Plus (Mult (Var "x") (IntLit 3))
(Mult (Var "y") (IntLit 5)))

27

Good and Bad:

Good:

@ It works!

@ It is general (applies to multiple tree types)

@ It provides some reuse

@ It reveals important role for subtrees/labelNode

Bad:
@ It's ugly and verbose

@ For any given tree type, there’s really only one
sensible way to define the subtrees function ...

28

Type Classes:

What distinguishes "tree types" from other types?

a value of a tree type can have zero or more
subtrees

And, for any given tree type, there's really only one
sensible way to do this.

class Tree t where
subtrees :: t -> [t]

29

For Instance(s):

instance Tree (BinTree a) where
subtrees (Leaf x) =[]
r) = [1, r]

o« N e

subtrees (1

instance Tree (LabTree 1 a) where
subtrees (Tip a) = []
subtrees (LFork s 1 r) = [1, r]

instance Tree (STree a) where
subtrees Empty = []
subtrees (Split s 1 r) = [1, r]

30

... continued:

instance Tree (RoseTree a) where

subtrees (Node x c¢s) = cs

instance Tree Expr where
subtrees (Var s) =

[]
subtrees (IntLit n) = []
subtrees (Plus 1 r) = [1, r]
subtrees (Mult 1 r) = [1, r]
So What?

31

Generic Operations on Trees:
depth :: t -> Int

depth = (1+) . foldl max 0 . map depth . subtrees
size HE t -> Int
size = (1+) . sum . map size . subtrees
paths HE t -> [[t]]
paths t | null br = [[t]]
| otherwise = [t:p | b <- br, p <- paths b]

where br = subtrees t

ars o [mmes € sl > o

dfs t = t : concat (map dfs (subtrees t))

Tree t => means “any type t, so long asitisa Tree

5 . . 32
type ... (i.e., so long as it has a subtrees function)

Implicit Parameterization:

@ An operation with a type Tree t => ... is implicitly
parameterized by the definition of a subtrees
function of type t -> [t]

@ (The implementation doesn’t have to work this
way ...)

@ Because there is at most one such function for
any given type t, there is no need for us to write
the subtrees parameter explicitly

@ That's good because it can mean less clutter,

more clarity
33

Labeled Trees:

@ To be able to convert trees into dot format, we
need the nodes to be labeled with strings.

@ Not all trees are labeled in this way, so we create
a subclass

class Tree t => LabeledTree t where
label :: t -> String

@ (Is this an appropriate use of overloading?)

34

LabeledTree Instances:

instance LabeledTree (BinTree String) where
label (Leaf x) = X
label (1 :*: r) = n"n

instance LabeledTree (LabTree String String) where
label (Tip a) = a
label (LFork s 1 r) = s

instance LabeledTree (STree String) where
label Empty = ""
label (Split s 1 r) = s

Needs hugs -98, for example

35

... continued:

instance LabeledTree (RoseTree String) where

label (Node x cs) = x

instance LabeledTree Expr where

label (Var s) = s
label (IntLit n) = show n
label (Plus 1 r) = "+"
label (Mult 1 r) = "*"

36

Generic Tree -> dot:

toDot :: LabeledTree t => t -> I0 ()
toDot t = writeFile "tree.dot"

("digraph tree {\n"

++ semi (nodeTree [] t) ++ "}\n")
where semi = foldr (\l1 1s -> 1 ++ ";\n" ++ 1ls) "~
nodeTree : LabeledTree t => Path -> t -> [String]
nodeTree p t

= [showPath p ++ " [label=\"" ++ label t ++ "\"]"]
++ concat (zipWith (edgeTree p) [1..] (subtrees t)
edgeTree : LabeledTree t => Path -> Int -> t -> [String]

edgeTree p n ¢ = [showPath p ++ " -> " ++ showPath p']
++ nodeTree p' c

where p' = n : p

37

Example:

toDot (Node "a" [Node "b" [],
Node "c" [1,
Node "d" [Node "e"

38
toDot (Plus (Mult (Var "x") (IntLit 3)) Main> toDot example
(Mult (Var "y") (IntLit 5))) ERROR - Unresolved overloading
*xx Type : LabeledTree (BinTree Int) => IO ()
*** Expression toDot example
Main> We need trees labeled
H H with strings ...
39 40
Main> toDot example . class Functor f where
ERROR - Unresolved overloading
*** Type : LabeledTree (BinTree Int) => IO () fmap P (a -> b) -> f a ->f b
**x* Expression toDot example
Main> toDot (mapTree show example) instance Functor [] where ...
Main> instance Functor Maybe where ...
mapTree :: (@ -> b) -> BinTree a -> BinTree b
mapTree f (Leaf x) = Leaf (f x) -- fmap id == id
mapTree f (I :~: r) = mapTree f | :~: mapTree f r
-— fmap (f . g) == fmap £ . fmap g

41

42

Tree Instances:

instance Functor BinTree where
Leaf (f x)
fmap £ 1 :*: fmap f r

fmap f (Leaf x)
fmap £ (1 :": 1)

instance Functor (LabTree 1) where
fmap £ (Tip a) = Tip (f a)
fmap £ (LFork s 1 r) = LFork s (fmap f 1) (fmap f r)

instance Functor STree where
fmap f Empty Empty

fmap £ (Split s 1 r) = Split (f s) (fmap f 1) (fmap f r)

instance Functor RoseTree where

fmap £ (Node x cs) = Node (f x) (map (fmap f) cs)

43
Why no instance for Expr?

Example:

LA

Main> toDot (fmap show (example :”: example))

LA

Main> depth (example :": example)
6

Main>

44

Type Classes:

@ We've been exploring one of the most novel
features that was introduced in the design of
Haskell

@ Similar ideas are now filtering in to other popular
languages (e.g., “concepts” in C++)

@ We'll spend the rest of our time in this lecture
looking at the original motivation for type classes

45

Between One and All:

@ Haskell allows us to define (monomorphic)
functions that have just one possible
instantiation:

not :: Bool -> Bool

@ And (polymorphic) functions that work for all
instantiations:

id :a->a

@ But not all functions fit comfortably into these two

categories ...
46

Addition:

@ What type should we use for the addition
operator (+)?

@ Picking a monomorphic type like
Int -> Int -> Int

is too limiting, because this can't be applied to
other numeric types

@ Picking a polymorphic type like
a->a->a
is too general, because addition only works for

“numeric types” ...
47

Equality:

@ What type should we use for the equality
operator (==)?

@ Picking a monomorphic type like
Int -> Int -> Bool

is too limiting, because this can't be applied to
other numeric types

@ Picking a polymorphic type like
a->a-> Bool

is too general, because there is no computable

equality on function types ...
48

Numeric Literals:

9 What type should we use for the type of the
numeric literal 0?

@ Picking a monomorphic type like Int is too
limiting, because then it can't be used for other
numeric types

= And functions like sum = foldl (+) 0 inherit the same
restriction and can only be used on limited types

@ Picking a polymorphic type like a is too general,
because there is no meaningful interpretation for
zero at all types ...

49

Workarounds (1):

@ We could use different names for the different
versions of an operator at different types:

w (4) i Int-> Int-> Int
= (+') :: Float -> Float -> Float
= (+") :: Integer -> Integer -> Integer

@ Apart from the fact that this is really ugly, it
prevents us from defining general functions that
use addition (again, sum = foldl (+) 0)

50

Workarounds (2):

@ We could just define the “unsupported” cases
with dummy values.

= 0:: Int produces an integer zero
= 0 :: Float produces a floating point zero

= 0 :: Int -> Bool produces some undefined value (e.g.,
sends the program into an infinite loop)

@ Attitude: “More fool you, programmer, for using
zero with an inappropriate type!”

51

Workarounds (3):

@ We could inspect the values of arguments that
are passed in to each function to determine which
interpretation is required.

@ Works for (+) and (==) (although still requires
that we assign a polymorphic type, so those
problems remain)

@ But it won't work for 0. There are no arguments
here from which to infer the type of zero that is
required; that information can only be determined
from the context in which it is used.

52

Workarounds (4):

@ Miranda and Orwell (two predecessors of Haskell)
included a type called "Num” that included both
floating point numbers and integers in the same
type

data Num = In Integer | Fl Float

@ Now (+) can be treated as a function of type
Num -> Num -> Num and applied to either
integers or floats, or even mixed argument types.

9 But we've lost a lot: types don't tell us as much,
and basic arithmetic operations are more

expensive to implement

Between a rock ...

@ In these examples, monomorphic types are too
restrictive, but polymorphic types are too general.

@ In designing the language, the Haskell Committee
had planned to take a fairly conservative
approach, consolidating the good ideas from
other languages that were in use at the time.

@ But the existing languages used a range of
awkward and ad-hoc techniques and nobody had
a good, general solution to this problem ...

54

“How to make ad-hoc
polymorphism less ad-hoc”

@ In 1989, Philip Wadler and Stephen Blott
proposed an elegant, general solution to these
problems

@ Their approach was to introduce a way of talking
about sets of types (“Type Classes”) and their

elements (“Instances”)

@ The Haskell committee decided to incorporate this
innocent and attractive idea into the first version
of Haskell ...

55

Type Classes:

@ A type class is a set of types

@ Haskell provides several built-in type

classes, including:

= Eq: types whose elements can be compared for
equality

= Num: numeric types

= Show: types whose values can be printed as
strings

= Integral: types corresponding to integer values,

= Enum: types whose values can be enumerated
(and hence used in [m..n] notation)

56

A (Not-Well Kept) Secret:

@ Users can define their own type classes

@ This can sometimes be very useful

@ It can also be abused

@ For now, we'll just focus on understanding and

using the built-in type classes ...

57

Instances:

@ The elements of a type class are known as the
instances of the class

@ If Cis aclass and tis a type, then we write Ct
to indicate that t is an element/instance of C

® (Maybe we should have used teC, but the €
symbol wasn't available in the character sets or
on the keyboards of last century’s computers

.m)

58

Instance Declarations:

@ The instances of a class are specified by a
collection of instance declarations:
instance Eq Int
instance Eq Integer
instance Eq Float
instance Eq Double
instance Eq Bool
instance Eq a => Eq [a]
instance Eq a => Eq (Maybe a)
instance (Eq a, Eq b) => Eq (a,b)

59

... continued:

@ In set notation, this is equivalent to saying that:
Eq = { Int, Integer, Float, Double, Bool }
U{[t][t€Eq}
U{ Maybet|tEeEq}
U{(t,t) |t EEq t,EEq}

@ Eqis an infinite set of types, but it doesn't include
all types (e.g., types like Int -> Int and [[Int] ->
Bool] are not included)

60

Derived Instances (1):

@ The prelude provides a number of types with
instance declarations that include those types in
the appropriate classes

@ Classes can also be extended with definitions for
new types by using a deriving clause:
data T = ... deriving Show
data S = ... deriving (Show, Ord, Eq)

@ The compiler will check that the types are
appropriate to be included in the specified
classes.

61

Operations:

@ The prelude also provides a range of functions,
with restricted polymorphic types:

(==) ::Eqa=>a->a->Bool
(+) “Numa=>a->a->a
min wOrda=>a->a->a

show :: Show a => a -> String

fromInteger :: Num a => Integer -> a

@ A type of the form C a => T(a) represents all
types of the form T(t) for any type t that is an
instance of the class C

62

Terminology:

@ An expression of the form C t is often referred to
as a constraint, a class constraint, or a predicate

@ A type of the form Ct => ... is often referred to
as a restricted type or as a gqualified type

@ A collection of predicates (Ct, D t',...) is often
referred to as a context. The parentheses can be
dropped if there is only one element.

63

Type Inference:

@ Type Inference works just as before, except that
now we also track constraints.
@ Example: null xs = (xs ==[])
= Assume xs :: a
= Pick (==) :: b -> b -> Bool with the constraint Eq b
= Pick instance [] :: [c]

= From (xs == []), we infer a = b = [c], with result type of
Bool

= Thus: null :: Eq [c] => [c] -> Bool
null :: Eq ¢ => [c] -> Bool

64

... continued:

@ Note: In this case, it would probably be better to
use the following definition:

null :: [a] -> Bool
null [] = True
null (x:xs) = False

@ The type [a] -> Bool is more general than
Eq a => [a] -> Bool, because the latter only
works with “equality types”

65

Examples:

@ We can treat the integer literal 0 as sugar for
(fromlInteger 0), and hence use this as a value of
any numeric type

= Strictly speaking, its type is Num a => a, which means
any type, so long as it's numeric ...

@ We can use (==) on integers, booleans, floats, or
lists of any of these types ... but not on function
types

@ We can use (+) on integers or on floating point
numbers, but not on Booleans

66

Inheriting Predicates:

@ Predicates in the type of a function f can
“infect” the type of a function that calls f

@ The functions:
member xs X = any (Xx==) xs
subset xs ys = all (member ys) xs

have types:
member :: Eqa => [a] -> a -> Bool
subset :: Eqa =>[a] -> [a] -> Bool

67

... continued:

@ For example, now we can define:
data Day = Sun|Mon|Tue|Wed|Thu|Fri|Sat
deriving (Eq, Show)

@ And then apply member and subset to this
new type:
Main> member [Mon,Tue,Wed,Thu,Fri] Wed
True
Main> subset [Mon,Sun] [Mon,Tue,Wed,Thu,Fri]
False
Main>

68

Eliminating Predicates:

@ Predicates can be eliminated when they are
known to hold
@ Given the standard prelude function:
sum :: Numa=>[a]->a
and a definition
gauss = sum [1..10::Integer]
we could infer a type
gauss :: Num Integer => Integer
But then simplify this to
gauss :: Integer

69

Detecting Errors:

Errors can be raised when predicates are known not
to hold:

Prelude> 'a' + 1

ERROR - Cannot infer instance
*** Instance : Num Char

*** Expression : 'a' + 1

Prelude> (\x -> x)
ERROR - Cannot find "show" function for:

*** Expression : \x -> x
*** Of type ra -> a
Prelude>

70

Derived Instances (2):

€ What if you define a new type and you
can't use a derived instance?
= Example: data Set a = Set [a] deriving Num
= What does it mean to do arithmetic on sets?

= How could the compiler figure this out from the
definition above?

@ What if you define a new type and the
derived equality is not what you want?
= Example: data Set a = Set [a]

= We'd like to think of Set [1,2] and Set [2,1] and
Set[1,1,1,2,2,1,2] as equivalent sets

71

Example: Derived Equality

@ The derived equality for Set gives us:
Setxs == Setys = Xs==ys

@ And the equality on lists gives us:
[1 ==[] =True
(x:xs) (y:ys) = (x==Yy) && (xs==ys)
= False

@ A derived equality function tests for
structural equality ... what we need for
Set is not a structural equality

72

Class Declarations:

@ Before we can define an instance, we need to
look at the class declaration:

class Eq a where

(==), (/=) :ra->a->Bool —
-- Minimal complete definition: (==) or (/=)
oy retemn | defaults |
x/=y =not(x==y)

@ To define an instance of equality, we will need to

provide an implementation for at least one of the
operators (==) or (/=)

73

Member Functions:

@ In a class declaration
class C a where
f, g, h::T(a)

9 member functions receive types of the form
f,g,h::Ca=>T(a)
@ From a user’s perspective, just like any other type
qualified by a predicate

@ From an implementer’s perspective, these are the
operations that we have to code to define an
instance

74

Instance Declarations:

@ We can define a non-structural equality on the
Set datatype using the following:

instance Eq a => Eq (Set a) where
Set xs == Set ys
= (xs ‘subset” ys) && (ys "subset’ xs)

@ This works as we'd like ...

Main> Set [1,1,1,2,2,1,2] == Set [1,2]
True

Main> Set [1,2] == Set [3,4]

False

Main> set [2,1] == Set [1,1,1,2,2,1,2]

True
Main>

75

Overloading:

@ Type classes support the definition of overloaded
functions

@ “Overloading”, because a single identifier can be
overloaded with multiple interpretations

@ But just because you can ... it doesn’t mean you
should!

@ Use judiciously, where appropriate, where there is
a coherent, unifying view of each overloaded
function should do

76

Defining New Classes:

@ Can I define new type classes in my program or
library?
= Yes!

@ Should I define new type classes in my program
or library?
= Yes, if it makes sense to do so!

= What common properties would the instances to share,
and how should this be reflected in the choice of the
operators?

= Does it make sense for the meaning of a symbol to be
uniquely determined by the types of the values that are
involved?

77

Beware of Ambiguity!

@ What if there isnt enough information to resolve
overloading?

= Early versions of Hugs would report an error if you
tried to evaluate show []

= The system infers a type Show a => String, and
doesn’t know what type to pick for the “ambiguous”
variable a

= (It could make a difference: show ([]::[Int]) = "[]",
but show ([]::[Char]) = "\"\"")

= Recent versions use defaulting to pick a default choice
... but the results there are also less than ideal ...

78

Summary:

@ Type classes provide a way to describe sets of
types and related families of operations that are
defined on their instances

@ A range of useful type classes are built-in to the
prelude

@ Classes can be extended by deriving new
instances or defining your own

@ New classes can also be defined

4 Once you've experienced programming with type
classes, it's hard to go without ...

79

