
Cse536 Functional Programming

1 1/14/2013

Compositional Functional Programming
with the Haskore Music

•Todays Topics

– The Haskore System
–The Music datatype
–MIDI Instruments
–Pitch & absolute Pitch
–Composing Music

» Delay
» Repeating
» Transposing

–Manipulating Music
» Duration
» Cutting
» Reversing

–Percussion
–Presentation and the MIDI file format

Cse536 Functional Programming

2 1/14/2013

Haskore
• Haskore is a Haskell library for constructing digital

music
– It supports an abstract high-level description of musical concepts
– Maps into the Midi (Musical Instrument Digital Interface) standard

» a low-level binary bit based encoding of music
» can be “played” by “Media-Players”

Haskore

Haskell

Haskore

Abstract
High Level

Implementation
independent

MIDI

low level
bit based

implementation
standard

presentation

Cse536 Functional Programming

3 1/14/2013

Musical Basics in Haskore
type Pitch = (PitchClass, Octave)
data PitchClass =
 Cf | C | Cs | Df | D | Ds | Ef | E
 | Es | Ff | F | Fs | Gf | G | Gs | Af
 | A | As | Bf | B | Bs
 deriving (Eq,Show)
type Octave = Int
 Middle C

Octave 2 Octave 3 Octave 4

C D E F G A B C

Cs Ds Fs Gs As
Df Ef Gf Af Bf

Cf Ff Es Cf Bs

Cse536 Functional Programming

4 1/14/2013

Music
data Music = Note Pitch Dur
 | Rest Dur
 | Music :+: Music
 | Music :=: Music
 | Tempo
 (Ratio Int) Music
 | Trans
 Int Music
 | Instr IName Music

Cse536 Functional Programming

5 1/14/2013

Midi Standard supports lots of instruments
data IName
 = AcousticGrandPiano | BrightAcousticPiano | ElectricGrandPiano | HonkyTonkPiano |

RhodesPiano | ChorusedPiano | Harpsichord | Clavinet
| Celesta | Glockenspiel | MusicBox | Vibraphone
| Marimba | Xylophone | TubularBells | Dulcimer
| HammondOrgan | PercussiveOrgan | RockOrgan | ChurchOrgan
| ReedOrgan | Accordion | Harmonica | TangoAccordion |
AcousticGuitarNylon | AcousticGuitarSteel | ElectricGuitarJazz | ElectricGuitarClean
| ElectricGuitarMuted | OverdrivenGuitar | DistortionGuitar | GuitarHarmonics
| AcousticBass | ElectricBassFingered | ElectricBassPicked | FretlessBass |
SlapBass1 | SlapBass2 | SynthBass1 | SynthBass2 | Violin
| Viola | Cello | Contrabass | TremoloStrings |
PizzicatoStrings | OrchestralHarp | Timpani | StringEnsemble1 |
StringEnsemble2 | SynthStrings1 | SynthStrings2 | ChoirAahs |
VoiceOohs | SynthVoice | OrchestraHit | Trumpet |
Trombone | Tuba | MutedTrumpet | FrenchHorn | BrassSection
| SynthBrass1 | SynthBrass2 | SopranoSax | AltoSax |
TenorSax | BaritoneSax | Oboe | Bassoon | EnglishHorn |
Clarinet | Piccolo | Flute | Recorder | PanFlute |
BlownBottle | Shakuhachi | Whistle | Ocarina |
Lead1Square | Lead2Sawtooth | Lead3Calliope | Lead4Chiff |
Lead5Charang | Lead6Voice | Lead7Fifths | Lead8BassLead |
Pad1NewAge | Pad2Warm | Pad3Polysynth | Pad4Choir |
Pad5Bowed | Pad6Metallic | Pad7Halo | Pad8Sweep | FX1Train
| FX2Soundtrack | FX3Crystal | FX4Atmosphere | FX5Brightness |
FX6Goblins | FX7Echoes | FX8SciFi | Sitar | Banjo
| Shamisen | Koto | Kalimba | Bagpipe | Fiddle
| Shanai | TinkleBell | Agogo | SteelDrums | Woodblock
| TaikoDrum | MelodicDrum | SynthDrum | ReverseCymbal |
GuitarFretNoise | BreathNoise | Seashore | BirdTweet |
TelephoneRing | Helicopter | Applause | Gunshot | Percussion

 deriving (Show,Eq,Ord,Enum)

Cse536 Functional Programming

6 1/14/2013

type Dur = Ratio Int
– fractions of Integers such as 3 /4. We write (3 % 4) in Haskell.

type AbsPitch = Int

absPitch :: Pitch -> AbsPitch
absPitch (pc,oct) = 12*oct + pcToInt pc

Duration & Absolute Pitch

0 1 2 3 4 5 6 7 8 9 10 11 12 24 36 . . .

(C,0) (C,1) (C,2) (C,3)

Cse536 Functional Programming

7 1/14/2013

Pitch to integer
pcToInt :: PitchClass -> Int
pcToInt pc = case pc of
 Cf -> -1 -- should Cf be 11?
 C -> 0 ; Cs -> 1
 Df -> 1 ; D -> 2 ; Ds -> 3
 Ef -> 3 ; E -> 4 ; Es -> 5
 Ff -> 4 ; F -> 5 ; Fs -> 6
 Gf -> 6 ; G -> 7 ; Gs -> 8
 Af -> 8 ; A -> 9 ; As -> 10
 Bf -> 10 ; B -> 11 ; Bs -> 12 -- maybe 0?

Note how several different pitches have the same absolute pitch. This is
because the “flat” of some notes is the “sharp” of another.

C D E F G A B C

Cs Ds Fs Gs As
Df Ef Gf Af Bf

Cf Ff Es Cf Bs

Cse536 Functional Programming

8 1/14/2013

From AbsPitch to Pitch

pitch12 = [C,Cs,D,Ds,E,F,Fs,G,Gs,A,As,B]
pitch :: AbsPitch -> Pitch
pitch a = (pitch12 !! mod a 12, quot a 12)

trans :: Int -> Pitch -> Pitch
trans i p = pitch (absPitch p + i)

0 1 2 3 4 5 6 7 8 9 10 11 12 24 36 . . .

(C,0) (C,1) (C,2) (C,3)
octave

Dist above C

Cse536 Functional Programming

9 1/14/2013

Generic Music - Notes

cf,c,cs,df,d,ds,ef,e,es,ff,f,fs,gf,g,gs,af,a,as,bf,b,bs
 :: Octave -> Dur -> [NoteAttribute] -> Music

cf o = Note(Cf,o); c o = Note(C,o); cs o = Note(Cs,o)
df o = Note(Df,o); d o = Note(D,o); ds o = Note(Ds,o)
ef o = Note(Ef,o); e o = Note(E,o); es o = Note(Es,o)
ff o = Note(Ff,o); f o = Note(F,o); fs o = Note(Fs,o)
gf o = Note(Gf,o); g o = Note(G,o); gs o = Note(Gs,o)
af o = Note(Af,o); a o = Note(A,o); as o = Note(As,o)
bf o = Note(Bf,o); b o = Note(B,o); bs o = Note(Bs,o)

Given an Octave creates a function from Dur to Music in that octave.

Note that Note :: Pitch -> Dur -> Music

These functions have the same names as the constructors of the
PitchClass but they’re not capitalized.

Cse536 Functional Programming

10 1/14/2013

Generic Music - Rests
wn, hn, qn, en, sn, tn :: Dur
dhn, dqn, den, dsn :: Dur
wnr, hnr, qnr, enr, snr, tnr :: Music
dhnr, dqnr, denr, dsnr :: Music

wn = 1 ; wnr = Rest wn -- whole
hn = 1%2 ; hnr = Rest hn -- half
qn = 1%4 ; qnr = Rest qn -- quarter
en = 1%8 ; enr = Rest en -- eight
sn = 1%16 ; snr = Rest sn -- sixteenth
tn = 1%32 ; tnr = Rest tn -- thirty-second

dhn = 3%4 ; dhnr = Rest dhn -- dotted half
dqn = 3%8 ; dqnr = Rest dqn -- dotted quarter
den = 3%16 ; denr = Rest den -- dotted eighth
dsn = 3%32 ; dsnr = Rest dsn -- dotted sixteenth

Cse536 Functional Programming

11 1/14/2013

Lets Write Some Music!
line, chord :: [Music] -> Music
line = foldr (:+:) (Rest 0)
chord = foldr (:=:) (Rest 0)

• Example 1

cScale =
 line [c 4 qn [], d 4 qn [], e 4 qn [],
 f 4 qn [], g 4 qn [], a 4 qn [],
 b 4 qn [], c 5 qn []]

Note the change
in Octave

Cse536 Functional Programming

12 1/14/2013

More Examples
cMaj = [n 4 hn | n <- [c,e,g]]
cMin = [n 4 wn | n <- [c,ef, g]]

• Example 2

cMajArp = line cMaj

• Example 3

cMajChd = chord cMaj

• Example 4

ex4 = line [chord cMaj, chord cMin]

Cse536 Functional Programming

13 1/14/2013

Time Delaying Music

delay :: Dur -> Music -> Music
delay d m = Rest d :+: m

ex5 = cScale :=: (delay dhn cScale)

Cse536 Functional Programming

14 1/14/2013

Transposing Music

ex6 = line [line cMajor
 ,Trans 12 (line cMajor)]

12 tone
difference

Cse536 Functional Programming

15 1/14/2013

Repeating Music
repeatM :: Music -> Music
repeatM m = m :+: repeatM m

nBeatsRest n note =
 line ((take n (repeat note)) ++ [qnr])

ex7 =
 line [e 4 qn [], d 4 qn [], c 4 qn [], d 4 qn [],
 line [nBeatsRest 3 (n 4 qn []) | n <- [e,d]],
 e 4 qn [], nBeatsRest 2 (g 4 qn [])]

Cse536 Functional Programming

16 1/14/2013

Fancy Stuff
pr1, pr2 :: Pitch -> Music
pr1 p = Tempo (5%6)
 (Tempo (4%3) (mkLn 1 p qn :+:
 Tempo (3%2) (mkLn 3 p en :+:
 mkLn 2 p sn :+:
 mkLn 1 p qn) :+:
 mkLn 1 p qn) :+:
 Tempo (3%2) (mkLn 6 p en))
pr2 p = Tempo (7%6)
 (m1 :+:
 Tempo (5%4) (mkLn 5 p en) :+:
 m1 :+:
 Tempo (3%2) m2)
 where m1 = Tempo (5%4) (Tempo (3%2) m2 :+: m2)
 m2 = mkLn 3 p en
mkLn n p d = line (take n (repeat (Note p d)))
pr12 :: Music
pr12 = pr1 (C,5) :=: pr2 (G,5)

Cse536 Functional Programming

17 1/14/2013

How long is a piece of music?

dur :: Music -> Dur

dur (Note _ d) = d
dur (Rest d) = d
dur (m1 :+: m2) = dur m1 + dur m2
dur (m1 :=: m2) = dur m1 `max` dur m2
dur (Tempo a m) = dur m / a
dur (Trans _ m) = dur m
dur (Instr _ m) = dur m

Cse536 Functional Programming

18 1/14/2013

Reversing a piece of music
revM :: Music -> Music

revM n@(Note _ _) = n
revM r@(Rest _) = r
revM (Tempo a m) = Tempo a (revM m)
revM (Trans i m) = Trans i (revM m)
revM (Instr i m) = Instr i (revM m)
revM (m1 :+: m2) = revM m2 :+: revM m1
revM (m1 :=: m2)
 = let d1 = dur m1
 d2 = dur m2
 in if d1>d2
 then revM m1 :=: (Rest (d1-d2) :+: revM m2)
 else (Rest (d2-d1) :+: revM m1) :=: revM m2

Cse536 Functional Programming

19 1/14/2013

Cutting a piece of music short
cut :: Dur -> Music -> Music

cut d m | d <= 0 = Rest 0
cut d (Note x d0) = Note x (min d0 d)
cut d (Rest d0) = Rest (min d0 d)
cut d (m1 :=: m2) = cut d m1 :=: cut d m2
cut d (Tempo a m) = Tempo a (cut (d*a) m)
cut d (Trans a m) = Trans a (cut d m)
cut d (Instr a m) = Instr a (cut d m)
cut d (m1 :+: m2) =
 let m1' = cut d m1
 m2' = cut (d - dur m1') m2
 in m1' :+: m2'

Cse536 Functional Programming

20 1/14/2013

Comments
• Music is a high level abstract representation

of music.
• Its analyzable so we can do many things with

it
– First, we can play it
– But we can also

» compute its duration (without playing it)
» reverse it
» scale it’s Tempo
» truncate it to a specific duration
» transpose it into another key

Cse536 Functional Programming

21 1/14/2013

Percussion

data PercussionSound
 = AcousticBassDrum -- MIDI Key 35
 | BassDrum1 -- MIDI Key 36
 | SideStick -- ...
 | AcousticSnare | HandClap | ElectricSnare | LowFloorTom
 | ClosedHiHat | HighFloorTom | PedalHiHat | LowTom
 | OpenHiHat | LowMidTom | HiMidTom | CrashCymbal1
 | HighTom | RideCymbal1 | ChineseCymbal | RideBell
 | Tambourine | SplashCymbal | Cowbell | CrashCymbal2
 | Vibraslap | RideCymbal2 | HiBongo | LowBongo
 | MuteHiConga | OpenHiConga | LowConga | HighTimbale
 | LowTimbale | HighAgogo | LowAgogo | Cabasa
 | Maracas | ShortWhistle | LongWhistle | ShortGuiro
 | LongGuiro | Claves | HiWoodBlock | LowWoodBlock
 | MuteCuica | OpenCuica | MuteTriangle
 | OpenTriangle -- MIDI Key 82
 deriving (Show,Eq,Ord,Ix,Enum)

Cse536 Functional Programming

22 1/14/2013

Let’s beat the drums
perc :: PercussionSound -> Dur -> Music
perc ps = Note (pitch (fromEnum ps + 35))

funkGroove
 = let p1 = perc LowTom qn
 p2 = perc AcousticSnare en
 in Tempo 3 (Instr Percussion (cut 8 (repeatM
 ((p1 :+: qnr :+: p2 :+: qnr :+: p2 :+:
 p1 :+: p1 :+: qnr :+: p2 :+: enr)
 :=: roll en (perc ClosedHiHat 2))
)))

Cse536 Functional Programming

23 1/14/2013

Music Presentation
• Music is a highlevel, abstract representation
• We call the playing of Music its Presentation
• Presentation requires “flattening” the Music

representation into a list of low level events.
– Events contain information about

» pitch
» start-time
» end-time
» loudness
» duration
» instrument etc.

• The MIDI standard is a file format to represent this
low level information.

• Presentation is the subject of the next lecture.

Cse536 Functional Programming

24 1/14/2013

MIDI Event List
Hours,

Minutes,
Seconds,
Frames

track

Time in 2 formats

channel

Measure,
Beats,
Ticks

Pitch, Volume, Duration

	Compositional Functional Programming �with the Haskore Music
	Haskore
	Musical Basics in Haskore
	Music
	Midi Standard supports lots of instruments
	Duration & Absolute Pitch
	Pitch to integer
	From AbsPitch to Pitch
	Generic Music - Notes
	Generic Music - Rests
	Lets Write Some Music!
	More Examples
	Time Delaying Music
	Transposing Music
	Repeating Music
	Fancy Stuff
	How long is a piece of music?
	Reversing a piece of music
	Cutting a piece of music short
	Comments
	Percussion
	Let’s beat the drums
	Music Presentation
	MIDI Event List

