Functional Programming

Tim Sheard, March 2015

Categories, Algebraic and CoAlgebraic Programs

• Categories
• Functors
• F Algebras
• Initial and Final Algebras
• Induction and CoInduction
A category is a mathematical structure

A set of objects
A set of arrows between objects
Every object, $A$, has an arrow to itself $\text{id}_A$
Arrows are transitive (composable)

$F: A \rightarrow B$
$G: B \rightarrow C$

Then there exists $(G \circ F): A \rightarrow C$
We sometimes write this as $(F; G): A \rightarrow C$
A Functor is a mapping between categories

The mapping has two parts
One part maps objects
The other part maps arrows

If $T$ is a functor between categories $C$ and $D$, then $T$ is used in two different ways.
If $X$ is an object in $C$, then $T X$ is an object in $D$
If $f$ is an arrow in $C$ between objects $A$ and $B$, then $T f$ is an arrow in $D$ between $T A$ and $T B$
Functor Laws

Let A be an object in C
Then $\text{id}_A$ is a function in C
Then $T \text{id}_A$ is a function in D, in fact it must be $\text{id}_{T(A)}$

Let $g: P \to Q$ and $f: Q \to R$ in C
Then $(f \circ g)$ is a function in C between P and R
Then $T(f \circ g)$ is a function in D between $T(P)$ and $T(R)$, in fact it must be the function $Tf \circ Tg$ in D
class functor t where

    fmap :: (a -> b) -> t a -> t b

Note "t" is the mapping on objects, and "fmap" is the mapping on arrows.

fmap id = id
fmap (f . g) = fmap f . fmap g
Endo Functors

An endo-functor is a functor from a category to itself.

In the Haskell world, there is a category (call it H) where the objects are types (like `Int`, `Bool`, `[Int]` etc), and the arrows are functions (like `(+1)`, `length`, `reverse`)

Functors in Haskell are endofunctors from H to H
Haskell functors

Just about any first order datatype with one parameter in Haskell defines a functor

data L x = Nil | Cons Int x
data T x = Tip | Fork x Int x
data E x =
    Const Int | Add x x | Mult x x

Why must the data structure be first order (i.e. without embedded functions)?
Algebras and Functors

An F-algebra over a carrier sort x is set of functions (and constants) that consume an F x object to produce another x object.

In Haskell we can simulate this by a data definition for a functor (F x) and a function (F x) -> x

data Algebra f c = Algebra (f c -> c)
data F1 x = Zero | One | Plus x x
data ListF a x = Nil | Cons a x

Note how the constructors of the functor play the roles of the constants and functions.
Examples

\[
\begin{align*}
f & : \text{F1 \ Int} \rightarrow \text{Int} \\
f \ \text{Zero} & = 0 \\
f \ \text{One} & = 1 \\
f \ (\text{Plus} \ x \ y) & = x+y \\
\text{g} & : \text{F1 \ [Int]} \rightarrow \text{[Int]} \\
\text{g} \ \text{Zero} & = [] \\
\text{g} \ \text{One} & = [1] \\
\text{g} \ (\text{Plus} \ x \ y) & = x \ ++ \ y
\end{align*}
\]

\[
\begin{align*}
\text{alg1} & : \text{Algebra \ F1 \ Int} \\
\text{alg1} & = \text{Algebra} \ f \\
\text{alg2} & : \text{Algebra \ F1 \ [Int]} \\
\text{alg2} & = \text{Algebra} \ g
\end{align*}
\]
More Examples

data ListF a x = Nil | Cons a x

h :: ListF b Int -> Int
h Nil = 0
h (Cons x xs) = 1 + xs

alg3 :: Algebra (ListF a) Int
alg3 = Algebra h
An initial Algebra is the set of terms we can obtain be iteratively applying the functions to the constants and other function applications.

This set can be simulated in Haskell by the data definition:

```haskell
data Initial alg = Init (alg (Initial alg))
```

Here the function is:

```haskell
Init :: alg (Init alg) -> Init alg
f :: T x -> x
```

Note how this fits the \((T \times \rightarrow x)\) pattern.
Example elements of Initial Algebras

\[
\begin{align*}
\text{ex1} &:: \text{Initial } F1 \\
\text{ex1} &= \text{Init}(\text{Plus} \ (\text{Init One}) \ (\text{Init Zero})) \\
\text{ex2} &:: \text{Initial} \ (\text{ListF} \ \text{Int}) \\
\text{ex2} &= \text{Init}(\text{Cons} \ 2 \ (\text{Init Nil})) \\
\text{initialAlg} &:: \text{Algebra} \ f \ (\text{Initial} \ f) \\
\text{initialAlg} &= \text{Algebra} \ Init
\end{align*}
\]
Defining Functions

We can write functions by a case analysis over the functions and constants that generate the initial algebra

\[ \text{len} :: \text{Num } a \Rightarrow \text{Initial} \ (\text{ListF } b) \rightarrow a \]
\[ \text{len} \ (\text{Init Nil}) = 0 \]
\[ \text{len} \ (\text{Init} \ (\text{Cons } x \ xs)) = 1 + \text{len} \ xs \]

\[ \text{app} :: \text{Initial} \ (\text{ListF } a) \rightarrow \]
\[ \quad \text{Initial} \ (\text{ListF } a) \rightarrow \text{Initial} \ (\text{ListF } a) \]
\[ \text{app} \ (\text{Init Nil}) \ ys = ys \]
\[ \text{app} \ (\text{Init} \ (\text{Cons } x \ xs)) \ ys = \]
\[ \quad \text{Init}(\text{Cons } x \ (\text{app} \ xs \ ys)) \]
F-algebra homomorphism

An F-algebra, f, is said to be initial to any other algebra, g, if there is a UNIQUE homomorphism, from f to g (this is an arrow in the category of F-algebras).

We can show the existence of this homomorphism by building it as a datatype in Haskell.

Note: that for each "f", (Arrow f a b) denotes an arrow in the category of f-algebras.

```haskell
data Arrow f a b =
    Arr (Algebra f a) (Algebra f b) (a->b)
    -- plus laws about the function (a->b)
```
F-homomorphism laws

For every Arrow

\[(\text{Arr (Algebra } f\text{)} (\text{Algebra } g) \text{) } h)\]

it must be the case that

\[
\text{valid} :: (\text{Eq } b, \text{ Functor } f) => \\
\text{Arrow } f \ a \ b \rightarrow f \ a \rightarrow \text{Bool} \\
\text{valid} \ (\text{Arr (Algebra } f\text{)} (\text{Algebra } g) \text{) } h) \ x = \\
h(f \ x) == g(\text{fmap } h \ x)
\]
Existence of \( h \)

To show the existence of "\( h \)" for any F-Algebra means we can compute a function with the type \( (a \rightarrow b) \) from the algebra. To do this we first define cata:

\[
\text{cata} :: \text{Functor} f \Rightarrow (\text{Algebra} f b) \rightarrow \text{Initial} f \rightarrow b
\]

\[
\text{cata} (\text{Algebra} \ \phi) \ (\text{Init} \ x) = \phi \left( \text{fmap} \ (\text{cata} (\text{Algebra} \ \phi)) \ x \right)
\]

\[
\text{exhibit} :: \text{Functor} f \Rightarrow \text{Algebra} f a \rightarrow \text{Arrow} f (\text{Initial} f) a
\]

\[
\text{exhibit} \ x = \text{Arr} \ \text{initialAlg} \ x \ (\text{cata} \ x)
\]
Writing functions as cata's

Lots of functions can be written directly as cata's.

\[
\text{len2 } x = \text{cata (Algebra } \phi) x \\
\text{where } \phi \text{ Nil } = 0 \\
\phi \text{ (Cons } x \text{ n)} = 1 + n
\]

\[
\text{app2 } x \ y = \text{cata (Algebra } \phi) x \\
\text{where } \phi \text{ Nil } = y \\
\phi \text{ (Cons } x \text{ xs)} = \text{Init}(\text{Cons } x \text{ xs})
\]
Induction Principle

With initiality comes the inductive proof method. So to prove something \( (\text{prop } x) \) where \( x::\text{Initial } A \) we proceed as follows

\[
\text{prop1} :: \text{Initial (ListF Int)} \rightarrow \text{Bool} \\
\text{prop1} \ x = \\
\quad \text{len} (\text{Init} (\text{Cons} \ 1 \ x)) = 1 + \text{len} \ x \\
\]

Prove: \( \text{prop1} \ (\text{Init} \ \text{Nil}) \)
Assume \( \text{prop1} \ xs \)
Then prove: \( \text{prop1} \ (\text{Init} \ (\text{Cons} \ x \ xs)) \)
Induction Proof Rules

For an arbitrary F-Algebra, we need a function from

\[ F(Proof \ prop \ x) \rightarrow Proof \ prop \ x \]

\[
data \ Proof \ p \ x \\
= \ Simple \ (p \ x) \\
| forall \ f . \\
\ Induct \ (Algebra \ f \ (Proof \ p \ x))
\]
CoAlgebras

An F-CoAlgebra over a carrier sort \( x \) is set of functions (and constants) whose types consume \( x \) to produce an F-structure

```haskell
data CoAlgebra f c = CoAlgebra (c -> f c)  
unCoAlgebra (CoAlgebra x) = x

countdown :: CoAlgebra (ListF Int) Int  
countdown = CoAlgebra f  
where f 0 = Nil  
      f n = Cons n (n-1)
```
Stream CoAlgebra

The classic CoAlgebra is the infinite stream

data StreamF n x = C n x

Note that if we iterate StreamF, there is No nil object, all streams are infinite. What we get is an infinite set of observations (the n-objects in this case).
Examples

We can write CoAlgebras by expanding a "seed" into an F structure filled with new seeds.

```
seed -> F seed
```

The non-parameterized slots can be filled with things computed from the seed. These are sometimes called observations.

```
endsIn0s ::
  CoAlgebra (StreamF Integer) [Integer]
endsIn0s = CoAlgebra f
  where f [] = C 0 []
        f (x:xs) = C x xs
```
More Examples

split :: CoAlgebra F1 Integer
split = CoAlgebra f
  where f 0 = Zero
  f 1 = One
  f n = Plus (n-1) (n-2)

fibs :: CoAlgebra (StreamF Int) (Int,Int)
fibs = CoAlgebra f
  where f (x,y) = C (x+y) (y,x+y)
Final CoAlgebras are sequences (branching trees?) of observations of the internal state. This allows us to iterate all the possible observations. Sometimes these are infinite structures.

```haskell
data Final f = Final (f (Final f))

unFinal :: Final a -> a (Final a)
unFinal (Final x) = x

finalCoalg :: CoAlgebra a (Final a)
finalCoalg = CoAlgebra unFinal
```
Example Final CoAlgebra elements

\[
\begin{align*}
  f1 &:: \text{Final} \ (\text{ListF} \ a) \\
  f1 & = \text{Final} \ \text{Nil} \\
  \text{ones} &:: \text{Final} \ (\text{StreamF} \ \text{Integer}) \\
  \text{ones} &= \text{Final} (\text{C} \ 1 \ \text{ones})
\end{align*}
\]
Iterating

We can write functions producing elements in the sort of Final CoAlgebras by expanding a "seed" into an F structure filled with observations and recursive calls in the "slots". Note then, that all that's really left is the observations.

\[
\text{nats :: Final (StreamF Integer)} \\
nats = g \ 0 \\
\text{where } g \ n = \text{Final (C n (g (n+1)))}
\]
data NatF x = Z | S x

omega :: Final NatF
omega = f undefined
  where f x = Final(S(f x))

n :: Int -> Final NatF
n x = f x
  where f 0 = Final Z
       f n = Final(S (f (n-1)))
A CoHommorphism is an arrow in the category of F-CoAlgebras

\[
\text{data } \text{CoHom } f \ a \ b = \\
\quad \text{CoHom } (\text{CoAlgebra } f \ a) \ (\text{CoAlgebra } f \ b) \ (a \rightarrow b)
\]

For every arrow in the category

\[(\text{CoHom } (\text{CoAlgebra } f) \ (\text{CoAlgebra } g) \ h)\]

it must be the case that

\[
\text{covalid } :: (\text{Eq } (f \ b), \text{Functor } f) \Rightarrow \text{CoHom } f \ a \ b \rightarrow a \rightarrow \text{Bool}
\]
\[
\text{covalid } (\text{CoHom } (\text{CoAlgebra } f) \ (\text{CoAlgebra } g) \ h) \ x = \text{fmap } h \ (f \ x) == g(h \ x)
\]
Final CoAlegbra

A F-CoAlgebra, $g$, is Final if for any other F-CoAlgebra, $f$, there is a unique F-CoAlgebra homomorphism, $h$, from $f$ to $g$.

We can show its existence be building a function that computes it from the CoAlgebra, $f$.

\[
\text{ana} :: \text{Functor } f => \\ (\text{CoAlgebra } f \text{ seed}) \to \text{seed} \to (\text{Final } f) \\
\text{ana} \ (\text{CoAlgebra } \phi) \ \text{seed} = \ \\
\quad \text{Final}(\text{fmap} \ (\text{ana} \ (\text{CoAlgebra } \phi)) \ (\phi \ \text{seed}))
\]

\[
\text{exhibit2} :: \text{Functor } f => \\ \text{CoAlgebra } f \text{ seed} \to \text{CoHom } f \text{ seed} \ (\text{Final } f) \\
\text{exhibit2} \ x = \text{CoHom} \ \text{finalCoalg} \ x \ (\text{ana} \ x)
\]
Examples

We use `ana` to iteratively unfold any coAlgebra to record its observations.

```haskell
final1 = ana endsIn0s
final2 = ana split
final3 = ana fibs

endsIn0s = CoAlgebra f
  where f [] = C 0 []
          f (x:xs) = C x xs

split = CoAlgebra f
  where f 0 = Zero
        f 1 = One
        f n = Plus (n-1) (n-2)

fibs :: CoAlgebra (StreamF Int) (Int,Int)
fibs = CoAlgebra f
  where f (x,y) = C (x+y) (y,x+y)

\[
tak :: \text{Num} ~ a \Rightarrow a \rightarrow \text{Final} \ (\text{StreamF} ~ b) \rightarrow [b]
\]
\[
tak \ 0 \ _ = []
\]
\[
tak \ n \ (\text{Final} \ (C \ x \ xs)) = x : \text{tak} \ (n-1) \ xs
\]

fibs5 = tak 5 (final3 (1,1))
```
Lets use CoAlgebras to represent Points in the 2-D plane as we would in an OO-language

data P x = P { xcoord :: Float
    , ycoord :: Float
    , move :: Float -> Float -> x}

pointF :: (Float,Float) -> P (Float,Float)
pointF (x,y) =  P { xcoord = x
    , ycoord = y
    , move = \ m n -> (m+x,n+y) }

type Point = CoAlgebra P (Float,Float)

point1 :: Point
point1 = CoAlgebra pointF