
Using Types

Slides thanks to Mark Jones

2

Expressions Have Types:

• The type of an expression tells you what kind of
value you might expect to see if you evaluate that
expression

• In Haskell, read “::” as “has type”

• Examples:
– 1 :: Int, 'a' :: Char, True :: Bool, 1.2 :: Float, …

• You can even ask GHCI for the type of an
expression: :t expr

3

Type Errors:
Hugs> 'a' && True

ERROR - Type error in application

*** Expression : 'a' && True

*** Term : 'a'

*** Type : Char

*** Does not match : Bool

Hugs> odd 1 + 2

ERROR - Cannot infer instance

*** Instance : Num Bool

*** Expression : odd 1 + 2

Hugs>

4

Pairs:

• A pair packages two values into one
(1, 2) ('a', 'z') (True, False)

• Components can have different types
(1, 'z') ('a', False) (True, 2)

• The type of a pair whose first component is of type
A and second component is of type B is written
(A,B)

• What are the types of the pairs above?

5

Operating on Pairs:

• There are built-in functions for extracting the
first and second component of a pair:

– fst (True, 2) = True

–snd (0, 7) = 7

• Is the following property true?

For any pair p, (fst p, snd p) = p

6

Lists:

• Lists can be used to store zero or more elements, in
sequence, in a single value:
[] [1, 2, 3] ['a', 'z'] [True, True, False]

• All of the elements in a list must have the same
type

• The type of a list whose elements are of type A is
written as [A]

• What are the types of the lists above?

Overloading

• Some expressions can have more than one
type

• Examples

– 23

– []

– f x = x < 3

– F x = show x ++ “ is the answer”

One way to get these is overloading

• Three important causes of overloading

• Numbers

– Num

• Comparisons

– Ord

• Displaying as a string

– Show

Information about overloading

• By typing “ :I T “ to GHCI you can find out
details of about the “T” kind of overloading.

Example: Num

*ProgrammingOutLoud> :i Num

class (Eq a, Show a) => Num a where

(+) :: a -> a -> a

(*) :: a -> a -> a

(-) :: a -> a -> a

negate :: a -> a

abs :: a -> a

signum :: a -> a

fromInteger :: Integer -> a

-- Defined in GHC.Num

instance Num Int -- Defined in GHC.Num

instance Num Integer -- Defined in GHC.Num

instance Num Double -- Defined in GHC.Float

instance Num Float -- Defined in GHC.Float

Integer

• Constants like 5, 35, 897 are in the Num class

• They default to the type Integer

Double

• Constants like 5.6, and 0.0 are Fractional

• These default to the type Double

Type declarations

• If you have a problem with a numeric constant
like 5 or 78.9, you will probably see an error
that mentions Num or Fractional.

• Fix these by adding type declarations

