Using Types

Slides thanks to Mark Jones

Expressions Have Types:

The type of an expression tells you what kind of
value you might expect to see if you evaluate that
expression

In Haskell, read “::” as “has type”

Examples:
— 1::Int, 'a':: Char, True :: Bool, 1.2 :: Float, ...

You can even ask GHCI for the type of an
expression: :texpr

Type Errors:

Hugs> 'a' && True
ERROR - Type error 1n application

*** Expression : 'a' && True
**%% Term : 'a'

***x Type : Char

*** Does not match : Bool

Hugs> odd 1 + 2

ERROR - Cannot infer instance
*** Tnstance : Num Rool
*** Expression : odd 1 + 2

Hugs>

Pairs:

A pair packages two values into one
(1, 2) 'a', '2') (True, False)

Components can have different types
(1, 'z") (‘a', False) (True, 2)

The type of a pair whose first component is of type
A and second component is of type B is written
(A,B)

What are the types of the pairs above?

Operating on Pairs:

* There are built-in functions for extracting the
first and second component of a pair:

—fst (True, 2) = True
—snd (0,7) =7

* |sthe following property true?
For any pair p, (fstp,sndp)=p

Lists:

Lists can be used to store zero or more elements, in
sequence, in a single value:
1 11, 2, 3] ['a', 'z'] [True, True, False]

All of the elements in a list must have the same
type

The type of a list whose elements are of type A is
written as [A]

What are the types of the lists above?

Overloading

* Some expressions can have more than one
type

 Examples
— 23
— [l
—fx=x<3

— F x=show x ++ “is the answer”

One way to get these is overloading

* Three important causes of overloading

e Numbers

— Num

* Comparisons
— Ord

* Displaying as a string
— Show

Information about overloading

e Bytyping “ :I' T “ toGHCIyou can find out
details of about the “T” kind of overloading.

*ProgrammingOutLoud>

class (Egq a,
(+) ::: a —>
(*) ::: a —>
(=) ::: a —>
negate :: a
abs :: a ->
signum :: a
fromInteger

Example: Num

Show a)

a —> a
a —> a

a —> a

-> a
a

-> a

i Num

=> Num a where

Integer —-> a

—-— Defined in GHC.Num

instance Num
instance Num
instance Num

instance Num

Int —-- Defined in GHC.Num

Integer —-- Defined in GHC.Num
Double —-- Defined in GHC.Float
Float -- Defined in GHC.Float

Integer

 Constants like 5, 35, 897 are in the Num class

* They default to the type Integer

Double

 Constants like 5.6, and 0.0 are Fractional

* These default to the type Double

Type declarations

* |f you have a problem with a numeric constant
like 5 or 78.9, you will probably see an error
that mentions Num or Fractional.

* Fix these by adding type declarations

