CS 457/557: Functional Languages

From Trees to Type Classes

Mark P Jones
Portland State University

Trees:

- There are many kinds of tree data structure.
- For example:

$$
\begin{aligned}
\text { data BinTree } a \quad= & \text { Leaf a } \\
& \mid \text { BinTree } a:^{\wedge}: \text { BinTree a } \\
& \text { deriving Show }
\end{aligned}
$$

* The "deriving Show" part makes it possible for us to print out tree values ...

Definition:

$$
\begin{aligned}
\text { example }: & : \text { BinTree Int } \\
\text { example } & =1:{ }^{\wedge}: r \\
\text { where } 1 & =\mathrm{p}:{ }^{\wedge}: q \\
r & =\mathrm{s}:{ }^{\wedge}: t \\
\mathrm{p} & =\text { Leaf } 1:^{\wedge}: t \\
\mathrm{q} & =\mathrm{s}:{ }^{\wedge}: \text { Leaf } 2 \\
\mathrm{~s} & =\text { Leaf } 3:^{\wedge}: \text { Leaf } 4 \\
t & =\text { Leaf } 5:^{\wedge}: \text { Leaf } 6
\end{aligned}
$$

- At the prompt:

Main> example

Main>		

Wouldn't it be nice ...

If we could view these trees in a graphical form

Mapping on Trees:

- We can define a mapping operation on trees:

```
mapTree :: (a -> b) -> BinTree a -> BinTree b
mapTree f (Leaf x) = Leaf (f x)
mapTree f (l :``: r) = mapTree f l :^^: mapTree f r
```

This is an analog of the map function on lists; it applies the function f to each leaf value stored in the tree.

- Example: convert every leaf value into a string:

Main> mapTree show example

```
((Leaf "1" :^: (Leaf "5" :^: Leaf
"6")) :^: ((Leaf "3" :^: Leaf "4") :^`:
Leaf "2")) :^: ((Leaf "3" :^: Leaf
"4") :^: (Leaf "5" :^: Leaf "6"))
Main>
```

- Example: add one to every leaf value:

```
Main> mapTree (1+) example
((Leaf 2 :^: (Leaf 6 :^: Leaf 7) ) :^^: ((Leaf
4 :^: Leaf 5) :^: Leaf 3)) :^` ((Leaf 4 :^`
Leaf 5) :^^:(Leaf 6 :^: Leaf 7))
Main>
```

- Still not very pretty ...

Visualizing the Results:

If we could view these trees in a graphical form ...

Visualizing the Results:

If we could view these trees in a graphical form ...

Visualizing the Results:

... we could see that mapTree preserves shape

Gives insight to the laws: mapTree id $=$ id mapTree (f.g) = mapTree f. mapTree g

Graphviz \& Dot:

- Graphviz is a set of tools for visualizing graph and tree structures
- Dot is the language that Graphviz uses for describing the tree/graph structures to be visualized.
- Usage: dot -Tpng file.dot > file.png

Example:

- To describe (Leaf "a" :^: Leaf "b" :^: Leaf "c"):

$$
\begin{gathered}
\text { digraph tree \{ } \\
\text { "1" [label=""]; } \\
\text { "1" -> "2"; } \\
\text { "2" [label=""]; } \\
\text { "2" -> "3"; } \\
\text { "3" [label="a"]; } \\
\text { "2" -> "4"; } \\
\text { "4" [label="b"]; } \\
\text { "1" -> "5"; } \\
\text { "5" [label="c"]; } \\
\}
\end{gathered}
$$

General Form:

A dot file contains a description of the form digraph name $\{$ stmts $\}$ where each stmt is either

- node_id [label="text"];
constructs a node with the specified id and label.
- node_id -> node_id; constructs an edge between the specified pair of nodes.
[Actually, there are many more options than this!]

From BinTree to dot:

How can we convert a BinTree value into a dot file?

For simplicity, assume a BinTree String input.

Labels:

* Label leaf nodes with the corresponding strings

Label internal nodes with the empty string

Node ids:
What should we use for node ids?

Paths:

Every node can be identified by a unique path:

- The root node of a tree has path []
- The $n^{\text {th }}$ child of a node with path p has path ($n: p$)
type Path = [Int]
type NodeId = String
showPath :: Path -> NodeId
showPath p = "\"" ++ show p ++ "\""
Add "quotes" to
avoid confusing
Graphviz tools

Example:

Actual dot code:

- To describe (Leaf "a" :^: Leaf "b" :^: Leaf "c"):
digraph tree \{
"[]" [label=""];
"[]" -> "[1]";
"[1]" [label=""];
"[1]" -> "[1,1]";
"[1,1]" [label="a"];
"[1]" -> "[2,1]";
"[2,1]" [label="b"];
"[]" -> "[2]";
"[2]" [label="c"];
$\}$

Capturing "Tree"-ness:

$$
\begin{aligned}
& \text { subtrees : : BinTree a -> [BinTree a] } \\
& \text { subtrees (Leaf x) = [] } \\
& \text { subtrees (l :^: r) = [l, r] } \\
& \text { nodeLabel : : BinTree String -> String } \\
& \text { nodeLabel (Leaf x) }=x \\
& \text { nodeLabel (l :^: r) = "" }
\end{aligned}
$$

Trees -> dot Statements:

```
nodeTree :: Path -> BinTree String -> [String]
nodeTree p t
    = [ showPath p ++ " [label=\"" ++ nodeLabel t ++ "\"]" ]
    ++ concat (zipWith (edgeTree p) [1..] (subtrees t))
edgeTree :: Path -> Int -> BinTree String -> [String]
edgeTree p n c
    = [ showPath p ++ " -> " ++ showPath p' ]
    ++ nodeTree p' c
    where p' = n : p
```


A Top-level Converter:

```
toDot :: BinTree String -> IO ()
toDot t = writeFile "tree.dot"
    ("digraph tree {\n"
    ++ semi (nodeTree [] t)
    ++ "}\n")
where semi = foldr (\l ls -> l ++ ";\n" ++ ls) ""
```

Now we can generate dot code for our example tree:

```
Main> toDot (mapTree show example)
```

Main> !dot -Tpng tree.dot > ex.png
Main>

What About Other Tree Types?

```
data LabTree l a = Tip a
    | LFork l (LabTree l a) (LabTree l a)
data STree a = Empty
    | Split a (STree a) (STree a)
    data RoseTree a = Node a [RoseTree a]
    data Expr
        = Var String
        | IntLit Int
        | Plus Expr Expr
        | Mult Expr Expr
```

Can I also visualize these using Graphviz?

Higher-Order Functions:

Essential tree structure is captured using the subtrees and nodeLabel functions.

What if we abstract these out as parameters?

$$
\begin{aligned}
& \text { nodeTree' : ((-> String) -> } \\
& \text { (t }->\text { [} \mathrm{t}] \text {) }-> \\
& \text { Path }->\text { t }->\text { [String] } \\
& \text { edgeTree' : (} \quad \text {-> String) -> } \\
& \text { (t }->\text { [t]) }-> \\
& \text { Path -> Int -> } t \text {-> [String] }
\end{aligned}
$$

Adding the Parameters:

```
nodeTree' lab su.b p t
    = [ showPath p ++ " [label=\"" ++ lab t ++ "\"]" ]
    ++ concat (zipWith (edgeTree' lab su.b p) [1..] (su.b t))
edgeTree' lab sub p n c
    = [ showPath p ++ " -> " ++ showPath p' ]
    ++ nodeTree' lab sub p' c
    where p' = n : p
toDot' :: (t -> String) -> (t -> [t]) -> t -> IO ()
toDot' lab sub t
    = writeFile "tree.dot"
    ("digraph tree {\n" ++ semi (nodeTree' lab sub [] t) ++ "}\n")
    where semi = foldr (\l ls -> l ++ ";\n" ++ ls) ""
```


Alternative (Local Definitions):

```
toDot'' :: (t -> String) -> (t -> [t]) -> t -> IO ()
toDot'' lab sub t
    = writeFile "tree.dot"
    ("digraph tree {\n" ++ semi (nodeTree' [] t) ++ "}\n")
    where
```

```
semi = foldr (\l ls -> l ++ ";\n" ++ ls) ""
```

semi = foldr (\l ls -> l ++ ";\n" ++ ls) ""
nodeTree' p t
nodeTree' p t
= [showPath p ++ " [label=\"" ++ lab t ++ "\"]"]
= [showPath p ++ " [label=\"" ++ lab t ++ "\"]"]
++ concat (zipWith (edgeTree' p) [1..] (sub t))

```
    ++ concat (zipWith (edgeTree' p) [1..] (sub t))
```

edgeTree' p n c
$=\left[\right.$ showPath $p++"->"++$ showPath $\left.p^{\prime}\right]++$ nodeTree' p' c
where $p^{\prime}=n: p$

Specializing to Tree Types:

```
toDotBinTree \(=\) toDot' lab sub
    where lab (Leaf x ) \(=\mathrm{x}\)
    lab (l :^: r) = ""
    sub (Leaf \(x\) ) \(=\) []
    sub (l : \({ }^{\wedge}\) : r) \(=[1, r]\)
toDotLabTree \(=\) toDot' lab sub
    where lab (Tip a) = a
    lab (LFork s l r) = s
    sub (Tip a) = []
    sub (LFork s l r) = [l, r]
toDotRoseTree \(=\) toDot' lab sub
    where lab (Node x cs) \(=\mathrm{x}\)
    sub (Node x cs) = cs

\section*{... continued:}
```

toDotSTree $=$ toDot' lab sub
where lab Empty = ""
lab (Split s l r) = s
sub Empty = []
sub (Split s l r) = [l, r]
toDotExpr $=$ toDot' lab sub
where lab (Var s) $=s$
lab (IntLit n) = show n
lab (Plus l r) = "+"
lab (Mult l r) = "*"
sub (Var s) $=$ []
sub (IntLit n) = []
sub (Plus l r) = [l, r]
sub (Mult l r) $=[1, r]$

```

\section*{Example:}

\section*{toDotRoseTree}
\(\begin{aligned} \text { (Node "a" } & \text { Node "b" [], } \\ & \text { Node "C" [], } \\ & \text { Node "d" [Node "e" []]]) }\end{aligned}\)


\section*{Example:}

\author{
toDotExpr \\ (Plus \\ \begin{tabular}{lll} 
(Mult (Var "x") & (IntLit 3)) \\
\((\) Mult (Var "y") & (IntLit 5)))
\end{tabular}
}


\section*{Good and Bad:}

Good:
- It works!
- It is general (applies to multiple tree types)
- It provides some reuse
- It reveals important role for subtrees/labelNode

\section*{Bad:}
- It's ugly and verbose

For any given tree type, there's really only one sensible way to define the subtrees function ...

\section*{Type Classes:}

What distinguishes "tree types" from other types?
a value of a tree type can have zero or more subtrees

And, for any given tree type, there's really only one sensible way to do this.
\[
\begin{aligned}
& \text { class Tree } t \text { where } \\
& \text { subtrees : : t -> [t] }
\end{aligned}
\]

\section*{For Instance(s):}
instance Tree (BinTree a) where
subtrees (Leaf x) = []
subtrees (l :^: r) = [l, r]
instance Tree (LabTree 1 a) where
\begin{tabular}{ll} 
subtrees (Tip a) & \(=[]\) \\
subtrees (LFork s l r) & \(=[1, r]\)
\end{tabular}
instance Tree (STree a) where subtrees Empty = []
subtrees (Split s l r) = [l, r]

\section*{... continued:}
```

instance Tree (RoseTree a) where
subtrees (Node x cs) = cs
instance Tree Expr where
subtrees (Var s) = []
subtrees (IntLit n) = []
subtrees (Plus l r) = [l, r]
subtrees (Mult l r) = [l, r]

```

So What?

\section*{Generic Operations on Trees:}
```

depth :: Tree t => t -> Int
depth = (1+) . foldl max 0 . map depth . subtrees
size :: Tree t => t -> Int
paths :: Tree t => t -> [[t]]
paths t | null br = [[t]]
| otherwise = [t:p | b <- br, p <- paths b]
where br = subtrees t
dfs :: Tree t => t -> [t]
dfs t = t : concat (map dfs (subtrees t))
Tree $t=>$ means "any type t, so long as it is a Tree type ..." (i.e., so long as it has a subtrees function)

Implicit Parameterization:

- An operation with a type Tree $\mathrm{t}=>$... is implicitly parameterized by the definition of a subtrees function of type $t->$ [t]
- (The implementation doesn't have to work this way ...)
- Because there is at most one such function for any given type t, there is no need for us to write the subtrees parameter explicitly
- That's good because it can mean less clutter, more clarity

Labeled Trees:

- To be able to convert trees into dot format, we need the nodes to be labeled with strings.

Not all trees are labeled in this way, so we create a subclass

$$
\begin{aligned}
& \text { class Tree t => LabeledTree t where } \\
& \text { label :: t -> String }
\end{aligned}
$$

(Is this an appropriate use of overloading?)

LabeledTree Instances:

```
instance LabeledTree (BinTree String) where
    label (Leaf x) = x
    label (l :^: r) = ""
instance LabeledTree (LabTree String String) where
    label (Tip a) = a
    label (LFork s l r) = s
instance LabeledTree (STree String) where
    label Empty = ""
    label (Split s l r) = s
```


continued:

```
instance LabeledTree (RoseTree String) where
    label (Node x cs) = x
instance LabeledTree Expr where
    label (Var s) = s
    label (IntLit n) = show n
    label (Plus l r) = "+"
    label (Mult l r) = "*"
```


Generic Tree -> dot:

```
toDot :: LabeledTree t => t -> IO ()
toDot t = writeFile "tree.dot"
        ("digraph tree {\n"
        ++ semi (nodeTree [] t) ++ "}\n")
    where semi = foldr (\l ls -> l ++ ";\n" ++ ls) ""
nodeTree :: LabeledTree t => Path -> t -> [String]
nodeTree p t
    = [ showPath p ++ " [label=\"" ++ label t ++ "\"]" ]
    ++ concat (zipWith (edgeTree p) [1..] (subtrees t))
edgeTree :: LabeledTree t => Path -> Int -> t -> [String]
edgeTree p n c = [ showPath p ++ " -> " ++ showPath p' ]
    ++ nodeTree p' c
    where p' = n : p
```


Example:

$$
\begin{aligned}
\text { toDot (Node "a" } & \text { [Node "b" [], } \\
& \text { Node "c" [], } \\
& \text { Node "d" [Node "e" []]]) }
\end{aligned}
$$

Example:

$$
\begin{array}{rlll}
\text { toDot (Plus } & (\text { Mult }(\operatorname{Var} \text { "x") } & \text { (IntLit 3)) } \\
& (\text { Mult }(\operatorname{Var} \text { "y") } & \text { (IntLit 5))) }
\end{array}
$$

Example:

Main> toDot example
ERROR - Unresolved overloading
*** Type : LabeledTree (BinTree Int) => IO ()
*** Expression : toDot example

Main>

We need trees labeled with strings ...

Example:

```
Main> toDot example
ERROR - Unresolved overloading
*** Type : LabeledTree (BinTree Int) => IO ()
*** Expression : toDot example
Main> toDot (mapTree show example)
Main>
mapTree 
```


The Functor Class:

class Functor f where
flap :: (a -> b) -> fa -> f b
instance Functor [] where ...
instance Functor Maybe where ...
-- map id == id
-- frap (f . g) == frap f. frap g

Tree Instances:

```
instance Functor BinTree where
    fmap f (Leaf x) = Leaf (f x)
    fmap f (l :`: r) = fmap f l :^: fmap f r
instance Functor (LabTree l) where
    fmap f (Tip a) = Tip (f a)
    fmap f (LFork s l r) = LFork s (fmap f l) (fmap f r)
instance Functor STree where
    fmap f Empty = Empty
    fmap f (Split s l r) = Split (f s) (fmap f l) (fmap f r)
instance Functor RoseTree where
    fmap f (Node x CS) = Node (f x) (map (fmap f) CS)
    Why no instance for Expr?
```


Example:

```
Main> toDot (fmap show (example :^: example))
```

$$
\text { Main> depth (example }:^{\wedge}: \text { example) }
$$

$$
6
$$

Type Classes:

* We've been exploring one of the most novel features that was introduced in the design of Haskell
- Similar ideas are now filtering in to other popular languages (e.g., "concepts" in C++)
* We'll spend the rest of our time in this lecture looking at the original motivation for type classes

Between One and All:

- Haskell allows us to define (monomorphic) functions that have just one possible instantiation:

not :: Bool -> Bool

- And (polymorphic) functions that work for all instantiations:

$$
\text { id }:: \text { a -> a }
$$

- But not all functions fit comfortably into these two categories ...

Addition:

- What type should we use for the addition operator (+)?
- Picking a monomorphic type like
Int -> Int -> Int
is too limiting, because this can't be applied to other numeric types
- Picking a polymorphic type like
a -> a -> a
is too general, because addition only works for "numeric types" ...

Equality:

- What type should we use for the equality operator (==)?
- Picking a monomorphic type like
Int -> Int -> Bool
is too limiting, because this can't be applied to other numeric types
- Picking a polymorphic type like
a -> a -> Bool
is too general, because there is no computable equality on function types ...

Numeric Literals:

- What type should we use for the type of the numeric literal 0 ?
- Picking a monomorphic type like Int is too limiting, because then it can't be used for other numeric types
- And functions like sum = foldl (+) 0 inherit the same restriction and can only be used on limited types
- Picking a polymorphic type like a is too general, because there is no meaningful interpretation for zero at all types ...

Workarounds (1):

We could use different names for the different versions of an operator at different types:

- (+) :: Int -> Int -> Int
- (+') :: Float -> Float -> Float
- (+') :: Integer -> Integer -> Integer
- ...
- Apart from the fact that this is really ugly, it prevents us from defining general functions that use addition (again, sum $=$ foldl (+) 0)

Workarounds (2):

- We could just define the "unsupported" cases with dummy values.
- 0 :: Int produces an integer zero
- 0 :: Float produces a floating point zero
- 0 :: Int -> Bool produces some undefined value (e.g., sends the program into an infinite loop)

Attitude: "More fool you, programmer, for using zero with an inappropriate type!"

Workarounds (3):

We could inspect the values of arguments that are passed in to each function to determine which interpretation is required.

- Works for (+) and (==) (although still requires that we assign a polymorphic type, so those problems remain)
- But it won't work for 0 . There are no arguments here from which to infer the type of zero that is required; that information can only be determined from the context in which it is used.

Workarounds (4):

- Miranda and Orwell (two predecessors of Haskell) included a type called "Num" that included both floating point numbers and integers in the same type
data Num = In Integer | Fl Float
- Now (+) can be treated as a function of type Num $->$ Num $->$ Num and applied to either integers or floats, or even mixed argument types.
- But we've lost a lot: types don't tell us as much, and basic arithmetic operations are more expensive to implement ...

Between a rock ...

- In these examples, monomorphic types are too restrictive, but polymorphic types are too general.
- In designing the language, the Haskell Committee had planned to take a fairly conservative approach, consolidating the good ideas from other languages that were in use at the time.
- But the existing languages used a range of awkward and ad-hoc techniques and nobody had a good, general solution to this problem ...

"How to make ad-hoc polymorphism less ad-hoc"

- In 1989, Philip Wadler and Stephen Blott proposed an elegant, general solution to these problems
- Their approach was to introduce a way of talking about sets of types ("Type Classes") and their elements ("Instances")
- The Haskell committee decided to incorporate this innocent and attractive idea into the first version of Haskell ...

Type Classes:

- A type class is a set of types

Haskell provides several built-in type classes, including:

- Eq: types whose elements can be compared for equality
- Num: numeric types
- Show: types whose values can be printed as strings
- Integral: types corresponding to integer values,
- Enum: types whose values can be enumerated (and hence used in [m..n] notation)

A (Not-Well Kept) Secret:

- Users can define their own type classes
- This can sometimes be very useful
- It can also be abused
- For now, we'll just focus on understanding and using the built-in type classes ...

Instances:

- The elements of a type class are known as the instances of the class
- If C is a class and t is a type, then we write Ct to indicate that t is an element/instance of C
* (Maybe we should have used $t \in C$, but the \in symbol wasn't available in the character sets or on the keyboards of last century's computers
... :-)

Instance Declarations:

- The instances of a class are specified by a collection of instance declarations:
instance Eq Int
instance Eq Integer
instance Eq Float
instance Eq Double
instance Eq Bool
instance Eq a => Eq [a]
instance Eq a => Eq (Maybe a) instance (Eq a, Eq b) => Eq (a,b)

continued:

- In set notation, this is equivalent to saying that: $\mathrm{Eq}=\{$ Int, Integer, Float, Double, Bool $\}$ $\cup\{[\mathrm{t}] \mid \mathrm{t} \in \mathrm{Eq}\}$ $\cup\{$ Maybe $t \mid t \in E q\}$ $\cup\left\{\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right) \mid \mathrm{t}_{1} \in \mathrm{Eq}, \mathrm{t}_{2} \in \mathrm{Eq}\right\}$

Eq is an infinite set of types, but it doesn't include all types (e.g., types like Int -> Int and [[Int] -> Bool] are not included)

Derived Instances (1):

- The prelude provides a number of types with instance declarations that include those types in the appropriate classes
- Classes can also be extended with definitions for new types by using a deriving clause: data $T=$... deriving Show data $S=\ldots$ deriving (Show, Ord, Eq)

The compiler will check that the types are appropriate to be included in the specified classes.

Operations:

- The prelude also provides a range of functions, with restricted polymorphic types:
(==) $\quad::$ Eq a => a -> a -> Bool
(+) $\quad::$ Num $a=>a->a->a$
min $\quad:$ Ord $a=>a->a->a$
show $\quad:$ Show $a=>a->$ String
fromInteger :: Num a => Integer -> a
- A type of the form C a => T(a) represents all types of the form $T(t)$ for any type t that is an instance of the class C

Terminology:

- An expression of the form $\mathrm{C} t$ is often referred to as a constraint, a class constraint, or a predicate
- A type of the form $\mathrm{Ct}=>$... is often referred to as a restricted type or as a qualified type
- A collection of predicates ($\mathrm{Ct}, \mathrm{D} \mathrm{t}^{\prime}, \ldots$) is often referred to as a context. The parentheses can be dropped if there is only one element.

Type Inference:

- Type Inference works just as before, except that now we also track constraints.
- Example: null xs = (xs == [])
- Assume xs :: a
- Pick (==) :: b -> b -> Bool with the constraint Eq b
- Pick instance [] :: [c]
- From (xs == []), we infer $\mathrm{a}=\mathrm{b}=[\mathrm{c}]$, with result type of Bool
- Thus: null :: Eq [c] => [c] -> Bool
null :: Eq c => [c] -> Bool

continued:

Note: In this case, it would probably be better to use the following definition:

null	$::[a]->$ Bool
null []	$=$ True
null (x:xs)	$=$ False

The type [a] -> Bool is more general than Eq a => [a] -> Bool, because the latter only works with "equality types"

Examples:

- We can treat the integer literal 0 as sugar for (fromInteger 0), and hence use this as a value of any numeric type
- Strictly speaking, its type is Num a => a, which means any type, so long as it's numeric ...
- We can use (==) on integers, booleans, floats, or lists of any of these types ... but not on function types
- We can use (+) on integers or on floating point numbers, but not on Booleans

Inheriting Predicates:

- Predicates in the type of a function f can "infect" the type of a function that calls f
- The functions: member xs $x=$ any $(x==) x s$ subset xs ys $=$ all (member ys) xs have types:
member :: Eq a => [a] -> a -> Bool
subset :: Eq a => [a] -> [a] -> Bool

continued:

* For example, now we can define: data Day = Sun|Mon|Tue|Wed|Thu|Fri|Sat deriving (Eq, Show)
* And then apply member and subset to this new type:

```
    Main> member [Mon,Tue,Wed,Thu,Fri] Wed
    True
    Main> subset [Mon,Sun] [Mon,Tue,Wed,Thu,Fri]
    False
    Main>
```


Eliminating Predicates:

- Predicates can be eliminated when they are known to hold
- Given the standard prelude function:
sum :: Num a => [a] -> a and a definition
gauss = sum [1..10::Integer]
we could infer a type
gauss :: Num Integer => Integer
But then simplify this to
gauss :: Integer

Detecting Errors:

Errors can be raised when predicates are known not to hold:

```
Prelude> 'a' + 1
ERROR - Cannot infer instance
*** Instance : Num Char
*** Expression : 'a' + 1
Prelude> (\x -> x)
ERROR - Cannot find "show" function for:
*** Expression : \x -> x
*** Of type: a -> a
Prelude>
```


Derived Instances (2):

* What if you define a new type and you can't use a derived instance?
- Example: data Set a = Set [a] deriving Num
- What does it mean to do arithmetic on sets?
- How could the compiler figure this out from the definition above?
* What if you define a new type and the derived equality is not what you want?
- Example: data Set a = Set [a]
- We'd like to think of Set [1,2] and Set [2,1] and Set $[1,1,1,2,2,1,2]$ as equivalent sets

Example: Derived Equality

- The derived equality for Set gives us:
Set xs == Set ys = xs == ys
* And the equality on lists gives us:

$$
\begin{aligned}
& \text { [] == [] = True } \\
& \text { (} x: x s \text {) }==(y: y s)=(x==y) \& \&(x s==y s) \\
& \text { _ == _ False }
\end{aligned}
$$

- A derived equality function tests for structural equality ... what we need for Set is not a structural equality

Class Declarations:

Before we can define an instance, we need to look at the class declaration:
class Eq a where

members

(==), (/=) :: a -> a -> Bool
-- Minimal complete definition: (==) or (/=)

$$
\begin{array}{ll}
x==y & =\operatorname{not}(x /=y) \\
x /=y & =\operatorname{not}(x==y)
\end{array}
$$ defaults

- To define an instance of equality, we will need to provide an implementation for at least one of the operators (==) or (/=)

Member Functions:

- In a class declaration

class C a where

f, g, h :: T(a)
member functions receive types of the form
f, g, h :: C a => T(a)

From a user's perspective, just like any other type qualified by a predicate

- From an implementer's perspective, these are the operations that we have to code to define an instance

Instance Declarations:

We can define a non-structural equality on the Set datatype using the following: instance Eq a => Eq (Set a) where
Set xs == Set ys

$$
=(x s \text { `subset` ys) \&\& (ys `subset` xs) }
$$

- This works as we'd like ...

```
Main> Set [1,1,1,2,2,1,2] == Set [1,2]
True
Main> Set [1,2] == Set [3,4]
False
Main> Set [2,1] == Set [1,1,1,2,2,1,2]
True
Main>
```


Overloading:

- Type classes support the definition of overloaded functions
- "Overloading", because a single identifier can be overloaded with multiple interpretations
- But just because you can ... it doesn't mean you should!
- Use judiciously, where appropriate, where there is a coherent, unifying view of each overloaded function should do

Defining New Classes:

- Can I define new type classes in my program or library?
- Yes!

Should I define new type classes in my program or library?

- Yes, if it makes sense to do so!
- What common properties would the instances to share, and how should this be reflected in the choice of the operators?
- Does it make sense for the meaning of a symbol to be uniquely determined by the types of the values that are involved?

Beware of Ambiguity!

* What if there isn't enough information to resolve overloading?
- Early versions of Hugs would report an error if you tried to evaluate show []
- The system infers a type Show a => String, and doesn't know what type to pick for the "ambiguous" variable a
- (It could make a difference: show ([]::[Int]) = "[]", but show ([]::[Char]) = "\"\"")
- Recent versions use defaulting to pick a default choice ... but the results there are also less than ideal ...

Summary:

- Type classes provide a way to describe sets of types and related families of operations that are defined on their instances
- A range of useful type classes are built-in to the prelude
- Classes can be extended by deriving new instances or defining your own
- New classes can also be defined
- Once you've experienced programming with type classes, it's hard to go without ...

