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CS 457/557: Functional 
Languages  

From Trees to Type Classes 

Mark P Jones 

Portland State University 

Trees: 

! " There are many kinds of tree data structure. 

! " For example: 

data BinTree a   = Leaf a 

                 | BinTree a :^: BinTree a 

                   deriving Show 

! " The “deriving Show” part makes it possible for us 
to print out tree values … 
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! " Definition: 
example :: BinTree Int 

example  = l :^: r 

 where l = p :^: q 

       r = s :^: t 

       p = Leaf 1 :^: t 

       q = s :^: Leaf 2 

       s = Leaf 3 :^: Leaf 4 

       t = Leaf 5 :^: Leaf 6 

! " At the prompt: 
Main> example 

((Leaf 1 :^: (Leaf 5 :^: Leaf 6)) :^: ((Leaf 

3 :^: Leaf 4) :^: Leaf 2)):^: ((Leaf 3 :^: 

Leaf 4) :^: (Leaf 5 :^: Leaf 6)) 

Main> 
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Wouldn’t it be nice … 

If we could view these trees in a graphical form 

         ? 
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Mapping on Trees: 

! " We can define a mapping operation on trees: 

mapTree :: (a -> b) -> BinTree a -> BinTree b 

mapTree f (Leaf x)  = Leaf (f x) 

mapTree f (l :^: r) = mapTree f l :^: mapTree f r 

! " This is an analog of the map function on lists; it 
applies the function f to each leaf value stored in 
the tree. 
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! " Example: convert every leaf value into a string: 
Main> mapTree show example 

((Leaf "1" :^: (Leaf "5" :^: Leaf 

"6")) :^: ((Leaf "3" :^: Leaf "4”) :^: 

Leaf "2")) :^: ((Leaf "3" :^: Leaf 

"4") :^: (Leaf "5" :^: Leaf "6")) 

Main> 

! " Example: add one to every leaf value: 
Main> mapTree (1+) example 

((Leaf 2 :^: (Leaf 6 :^: Leaf 7)) :^: ((Leaf 

4 :^: Leaf 5) :^: Leaf 3)):^: ((Leaf 4 :^: 

Leaf 5) :^: (Leaf 6 :^: Leaf 7)) 

Main> 

! " Still not very pretty … 
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Visualizing the Results: 

If we could view these trees in a graphical form … 

          

7 

Visualizing the Results: 

If we could view these trees in a graphical form … 
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Visualizing the Results: 

… we could see that mapTree preserves shape 

Gives insight to the laws: 

 mapTree id  =  id 

 mapTree (f . g)  =  mapTree f . mapTree g 
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Graphviz & Dot: 

! " Graphviz is a set of tools for visualizing graph and 
tree structures 

! " Dot is the language that Graphviz uses for 
describing the tree/graph structures to be 
visualized. 

! " Usage:  dot -Tpng file.dot > file.png 
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Example: 

! " To describe (Leaf "a" :^: Leaf "b" :^: Leaf "c"): 

digraph tree { 

  "1" [label=""]; 

  "1" -> "2"; 

  "2" [label=""]; 

  "2" -> "3"; 

  "3" [label="a"]; 

  "2" -> "4"; 

  "4" [label="b"]; 

  "1" -> "5"; 

  "5" [label="c"]; 

} 
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General Form: 

A dot file contains a description of the form 
digraph name { stmts } where each stmt is either 

! " node_id [label="text"]; 
constructs a node with the specified id and label. 

! " node_id -> node_id; 
constructs an edge between the specified pair of 
nodes. 

[Actually, there are many more options than this!] 
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From BinTree to dot: 

How can we convert a BinTree value into a dot file? 

For simplicity, assume a BinTree String input. 

Labels: 

! " Label leaf nodes with the corresponding strings 

! " Label internal nodes with the empty string 

Node ids: 

! " What should we use for node ids? 
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Paths: 

Every node can be identified by a unique path: 

! " The root node of a tree has path [] 

! " The nth child of a node with path p has path (n:p) 

type Path      = [Int] 

type NodeId  = String 

showPath      :: Path -> NodeId 

showPath p     = "\"" ++ show p ++ "\"" 
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Add “quotes” to 
avoid confusing 
Graphviz tools 

Example: 
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Actual dot code: 

! " To describe (Leaf "a" :^: Leaf "b" :^: Leaf "c"): 

digraph tree { 

"[]" [label=""]; 

"[]" -> "[1]"; 

"[1]" [label=""]; 

"[1]" -> "[1,1]"; 

"[1,1]" [label="a"]; 

"[1]" -> "[2,1]"; 

"[2,1]" [label="b"]; 

"[]" -> "[2]"; 

"[2]" [label="c"]; 

} 
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Capturing “Tree”-ness: 

subtrees           :: BinTree a -> [BinTree a] 

subtrees (Leaf x)   = [] 

subtrees (l :^: r)  = [l, r] 

nodeLabel          :: BinTree String -> String 

nodeLabel (Leaf x)  = x 

nodeLabel (l :^: r) = "" 
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Trees -> dot Statements: 

nodeTree    :: Path -> BinTree String -> [String] 

nodeTree p t 

 = [ showPath p ++ " [label=\"" ++ nodeLabel t ++ "\"]" ] 

   ++ concat (zipWith (edgeTree p) [1..] (subtrees t)) 

edgeTree    :: Path -> Int -> BinTree String -> [String] 

edgeTree p n c 

 = [ showPath p ++ " -> " ++ showPath p' ]  

++ nodeTree p' c 

   where p' = n : p 
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A Top-level Converter: 

toDot  :: BinTree String -> IO () 

toDot t = writeFile "tree.dot" 

           ("digraph tree {\n" 

            ++ semi (nodeTree [] t) 

            ++ "}\n") 

 where semi = foldr (\l ls -> l ++ ";\n" ++ ls) "” 

Now we can generate dot code for our example tree: 

Main> toDot (mapTree show example) 

Main> !dot -Tpng tree.dot > ex.png 

Main> 

19 

What About Other Tree Types? 

data LabTree l a = Tip a 

                 | LFork l (LabTree l a) (LabTree l a) 

data STree a     = Empty 

                 | Split a (STree a) (STree a) 

data RoseTree a  = Node a [RoseTree a] 

data Expr        = Var String 

                 | IntLit Int 

                 | Plus Expr Expr 

                 | Mult Expr Expr 

Can I also visualize these using Graphviz? 
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Higher-Order Functions: 

Essential tree structure is captured using the 
subtrees and nodeLabel functions. 

What if we abstract these out as parameters? 

nodeTree'  :: (t -> String) -> 

               (t -> [t]) -> 

                Path -> t -> [String] 

edgeTree'  :: (t -> String) -> 

               (t -> [t]) -> 

                Path -> Int -> t -> [String] 
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Adding the Parameters: 

nodeTree' lab sub p t 

 = [ showPath p ++ " [label=\"" ++ lab t ++ "\"]" ] 

 ++ concat (zipWith (edgeTree' lab sub p) [1..] (sub t)) 

edgeTree' lab sub p n c 

 = [ showPath p ++ " -> " ++ showPath p' ] 

 ++ nodeTree' lab sub p' c 

   where p' = n : p 

toDot' :: (t -> String) -> (t -> [t]) -> t -> IO () 

toDot' lab sub t 

 = writeFile "tree.dot” 

   ("digraph tree {\n” ++ semi (nodeTree' lab sub [] t) ++ "}\n") 

 where semi = foldr (\l ls -> l ++ ";\n" ++ ls) "" 
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Alternative (Local Definitions): 

toDot'' :: (t -> String) -> (t -> [t]) -> t -> IO () 

toDot'' lab sub t 

 = writeFile "tree.dot" 

     ("digraph tree {\n" ++ semi (nodeTree' [] t) ++ "}\n") 

 where 

  semi = foldr (\l ls -> l ++ ";\n" ++ ls) "” 

  nodeTree' p t 

    = [ showPath p ++ " [label=\"" ++ lab t ++ "\"]" ] 

    ++ concat (zipWith (edgeTree' p) [1..] (sub t)) 

  edgeTree' p n c 

    = [ showPath p ++ " -> " ++ showPath p' ] ++ nodeTree' p' c 

      where p' = n : p 
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Specializing to Tree Types: 

toDotBinTree = toDot' lab sub 

 where lab (Leaf x)  = x 

       lab (l :^: r) = "" 

       sub (Leaf x)  = [] 

       sub (l :^: r) = [l, r] 

toDotLabTree = toDot' lab sub 

 where lab (Tip a)       = a 

       lab (LFork s l r) = s 

       sub (Tip a)       = [] 

       sub (LFork s l r) = [l, r] 

toDotRoseTree = toDot' lab sub 

 where lab (Node x cs) = x 

       sub (Node x cs) = cs 24 



… continued: 

toDotSTree = toDot' lab sub 

 where lab Empty = "" 

       lab (Split s l r) = s 

       sub Empty = [] 

       sub (Split s l r) = [l, r] 

toDotExpr = toDot' lab sub 

 where lab (Var s)    = s 

       lab (IntLit n) = show n 

       lab (Plus l r) = "+" 

       lab (Mult l r) = "*" 

       sub (Var s)    = [] 

       sub (IntLit n) = [] 

       sub (Plus l r) = [l, r] 

       sub (Mult l r) = [l, r] 25 

Example: 

toDotRoseTree 

        (Node "a" [Node "b" [], 

                   Node "c" [], 

                   Node "d" [Node "e" []]]) 
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Example: 

toDotExpr (Plus (Mult (Var "x") (IntLit 3)) 

                (Mult (Var "y") (IntLit 5))) 
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Good and Bad: 

Good: 

! " It works! 

! " It is general (applies to multiple tree types) 

! " It provides some reuse 

! " It reveals important role for subtrees/labelNode 

Bad: 

! " It’s ugly and verbose 

! " For any given tree type, there’s really only one 
sensible way to define the subtrees function … 
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Type Classes: 

What distinguishes "tree types" from other types? 

a value of a tree type can have zero or more 
subtrees 

And, for any given tree type, there's really only one 
sensible way to do this. 

  class Tree t where 

     subtrees :: t -> [t] 
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For Instance(s): 

instance Tree (BinTree a) where 

  subtrees (Leaf x)   = [] 

  subtrees (l :^: r)  = [l, r] 

instance Tree (LabTree l a) where 

  subtrees (Tip a)       = [] 

  subtrees (LFork s l r) = [l, r] 

instance Tree (STree a) where 

  subtrees Empty = [] 

  subtrees (Split s l r) = [l, r] 
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… continued: 

instance Tree (RoseTree a) where 

  subtrees (Node x cs) = cs 

instance Tree Expr where 

  subtrees (Var s)    = [] 

  subtrees (IntLit n) = [] 

  subtrees (Plus l r) = [l, r] 

  subtrees (Mult l r) = [l, r] 

So What? 
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Generic Operations on Trees: 

depth  :: Tree t => t -> Int 

depth   = (1+) . foldl max 0 . map depth . subtrees 

size   :: Tree t => t -> Int 

size    = (1+) . sum . map size . subtrees 

paths               :: Tree t => t -> [[t]] 

paths t | null br    = [ [t] ] 

        | otherwise  = [ t:p | b <- br, p <- paths b ] 

          where br = subtrees t 

dfs    :: Tree t => t -> [t] 

dfs t   = t : concat (map dfs (subtrees t)) 

Tree t => means “any type t, so long as it is a Tree 
type …” (i.e., so long as it has a subtrees function) 

Implicit Parameterization: 

! " An operation with a type Tree t => …  is implicitly 
parameterized by the definition of a subtrees 
function of type t -> [t] 

! " (The implementation doesn’t have to work this 
way …) 

! " Because there is at most one such function for 
any given type t, there is no need for us to write 
the subtrees parameter explicitly 

! " That’s good because it can mean less clutter, 
more clarity  
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Labeled Trees: 

! " To be able to convert trees into dot format, we 
need the nodes to be labeled with strings. 

! " Not all trees are labeled in this way, so we create 
a subclass 

   class Tree t => LabeledTree t where 

 label :: t -> String 

! " (Is this an appropriate use of overloading?) 
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LabeledTree Instances: 

instance LabeledTree (BinTree String) where 

  label (Leaf x)   = x 

  label (l :^: r)  = "" 

instance LabeledTree (LabTree String String) where 

  label (Tip a)       = a 

  label (LFork s l r) = s 

instance LabeledTree (STree String) where 

  label Empty         = "" 

  label (Split s l r) = s 
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Needs hugs -98, for example  

… continued: 

instance LabeledTree (RoseTree String) where 

  label (Node x cs) = x 

instance LabeledTree Expr where 

  label (Var s)    = s 

  label (IntLit n) = show n 

  label (Plus l r) = "+" 

  label (Mult l r) = "*" 
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Generic Tree -> dot: 

toDot :: LabeledTree t => t -> IO () 

toDot t = writeFile "tree.dot" 

           ("digraph tree {\n" 

            ++ semi (nodeTree [] t) ++ "}\n") 

 where semi = foldr (\l ls -> l ++ ";\n" ++ ls) "” 

nodeTree    :: LabeledTree t => Path -> t -> [String] 

nodeTree p t 

  = [ showPath p ++ " [label=\"" ++ label t ++ "\"]" ] 

  ++ concat (zipWith (edgeTree p) [1..] (subtrees t)) 

edgeTree      :: LabeledTree t => Path -> Int -> t -> [String] 

edgeTree p n c = [ showPath p ++ " -> " ++ showPath p' ] 

               ++ nodeTree p' c 

                 where p' = n : p 
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Example: 

toDot (Node "a" [Node "b" [], 

                 Node "c" [], 

                 Node "d" [Node "e" []]]) 
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Example: 

toDot (Plus (Mult (Var "x") (IntLit 3)) 

            (Mult (Var "y") (IntLit 5))) 
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Example: 

Main> toDot example 

ERROR - Unresolved overloading 

*** Type       : LabeledTree (BinTree Int) => IO () 

*** Expression : toDot example 

Main>  
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We need trees labeled 
with strings … 

Example: 

Main> toDot example 

ERROR - Unresolved overloading 

*** Type       : LabeledTree (BinTree Int) => IO () 

*** Expression : toDot example 

Main> toDot (mapTree show example) 

Main>  
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mapTree                :: (a -> b) -> BinTree a -> BinTree b 
mapTree f (Leaf x)  = Leaf (f x) 
mapTree f (l :^: r)  = mapTree f l :^: mapTree f r 

The Functor Class: 

class Functor f where 

  fmap :: (a -> b) -> f a -> f b 

instance Functor [] where ... 

instance Functor Maybe where ... 

-- fmap id == id 

-- fmap (f . g) == fmap f . fmap g 
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Tree Instances: 
instance Functor BinTree where 

  fmap f (Leaf x)   = Leaf (f x) 

  fmap f (l :^: r)  = fmap f l :^: fmap f r 

instance Functor (LabTree l) where 

  fmap f (Tip a)       = Tip (f a) 

  fmap f (LFork s l r) = LFork s (fmap f l) (fmap f r) 

instance Functor STree where 

  fmap f Empty         = Empty 

  fmap f (Split s l r) = Split (f s) (fmap f l) (fmap f r) 

instance Functor RoseTree where 

  fmap f (Node x cs) = Node (f x) (map (fmap f) cs) 

43 

Why no instance for Expr? 

Example: 

Main> toDot (fmap show (example :^: example)) 

Main> depth (example :^: example) 

6 

Main>  
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Type Classes: 

! " We’ve been exploring one of the most  novel 
features that was introduced in the design of 
Haskell 

! " Similar ideas are now filtering in to other popular 
languages (e.g., “concepts” in C++) 

! " We’ll spend the rest of our time in this lecture 
looking at the original motivation for type classes 
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Between One and All: 

! " Haskell allows us to define (monomorphic) 
functions that have just one possible 
instantiation: 

    not :: Bool -> Bool 

! " And (polymorphic) functions that work for all 
instantiations: 

    id   :: a -> a 

! " But not all functions fit comfortably into these two 
categories … 
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Addition: 

! " What type should we use for the addition 
operator (+)? 

! " Picking a monomorphic type like 

        Int -> Int -> Int 

 is too limiting, because this can’t be applied to 
other numeric types 

! " Picking a polymorphic type like 

    a -> a -> a 

 is too general, because addition only works for 
“numeric types” … 
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Equality: 

! " What type should we use for the equality 
operator (==)? 

! " Picking a monomorphic type like 

       Int -> Int -> Bool 

 is too limiting, because this can’t be applied to 
other numeric types 

! " Picking a polymorphic type like 

       a -> a -> Bool 

 is too general, because there is no computable 
equality on function types … 
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Numeric Literals: 

! " What type should we use for the type of the 
numeric literal 0? 

! " Picking a monomorphic type like Int is too 
limiting, because then it can’t be used for other 
numeric types 
!" And functions like sum = foldl (+) 0 inherit the same 

restriction and can only be used on limited types 

! " Picking a polymorphic type like a is too general, 
because there is no meaningful interpretation for 
zero at all types … 
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Workarounds (1): 

! " We could use different names for the different 
versions of an operator at different types: 

!" (+) :: Int -> Int -> Int 

!" (+’) :: Float -> Float -> Float 

!" (+’’) :: Integer -> Integer -> Integer 

!" … 

! " Apart from the fact that this is really ugly, it 
prevents us from defining general functions that 
use addition (again, sum = foldl (+) 0) 
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Workarounds (2): 

! " We could just define the “unsupported” cases 
with dummy values. 

!" 0 :: Int  produces an integer zero 

!" 0 :: Float produces a floating point zero 

!" 0 :: Int -> Bool produces some undefined value (e.g., 
sends the program into an infinite loop) 

! " Attitude: “More fool you, programmer, for using 
zero with an inappropriate type!” 
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! " We could inspect the values of arguments that 
are passed in to each function to determine which 
interpretation is required. 

! " Works for (+) and (==)  (although still requires 
that we assign a polymorphic type, so those 
problems remain) 

! " But it won’t work for 0.  There are no arguments 
here from which to infer the type of zero that is 
required; that information can only be determined 
from the context in which it is used. 

Workarounds (3): 
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Workarounds (4): 

! " Miranda and Orwell (two predecessors of Haskell) 
included a type called “Num” that included both 
floating point numbers and integers in the same 
type 

  data Num = In Integer | Fl Float 

! " Now (+) can be treated as a function of type 
Num -> Num -> Num and applied to either 
integers or floats, or even mixed argument types. 

! " But we’ve lost a lot: types don’t tell us as much, 
and basic arithmetic operations are more 
expensive to implement … 
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Between a rock … 

! " In these examples, monomorphic types are too 
restrictive, but polymorphic types are too general. 

! " In designing the language, the Haskell Committee 
had planned to take a fairly conservative 
approach, consolidating the good ideas from 
other languages that were in use at the time. 

! " But the existing languages used a range of 
awkward and ad-hoc techniques and nobody had 
a good, general solution to this problem … 
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“How to make ad-hoc 
polymorphism less ad-hoc” 

! " In 1989, Philip Wadler and Stephen Blott 
proposed an elegant, general solution to these 
problems 

! " Their approach was to introduce a way of talking 
about sets of types (“Type Classes”) and their 
elements (“Instances”) 

! " The Haskell committee decided to incorporate this 
innocent and attractive idea into the first version 
of Haskell … 
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Type Classes: 

! " A type class is a set of types 

! " Haskell provides several built-in type 
classes, including: 
!" Eq: types whose elements can be compared for 

equality 

!" Num: numeric types 

!" Show: types whose values can be printed as 
strings 

!" Integral: types corresponding to integer values, 

!" Enum: types whose values can be enumerated 
(and hence used in [m..n] notation) 
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A (Not-Well Kept) Secret: 

! " Users can define their own type classes 

! " This can sometimes be very useful 

! " It can also be abused 

! " For now, we’ll just focus on understanding and 
using the built-in type classes … 
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Instances: 

! " The elements of a type class are known as the 
instances of the class 

! " If C is a class and t is a type, then we write  C t  
to indicate that t is an element/instance of C 

! " (Maybe we should have used t!C, but the ! 
symbol wasn’t available in the character sets or 
on the keyboards of last century’s computers 
… :-) 
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Instance Declarations: 

! " The instances of a class are specified by a 
collection of instance declarations: 
instance Eq Int 

instance Eq Integer 

instance Eq Float 

instance Eq Double 

instance Eq Bool 

instance Eq a => Eq [a] 

instance Eq a => Eq (Maybe a) 

instance (Eq a, Eq b) => Eq (a,b) 

… 
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… continued: 

! " In set notation, this is equivalent to saying that: 

 Eq = { Int, Integer, Float, Double, Bool } 
 " { [t] | t ! Eq } 
 " { Maybe t | t ! Eq } 
 " { (t1, t2) | t1 ! Eq, t2 ! Eq } 

! " Eq is an infinite set of types, but it doesn’t include 
all types (e.g., types like Int -> Int and [[Int] -> 
Bool] are not included) 



61 

Derived Instances (1): 

! " The prelude provides a number of types with 
instance declarations that include those types in 
the appropriate classes 

! " Classes can also be extended with definitions for 
new types by using a deriving clause: 
data T = … deriving Show 

data S = … deriving (Show, Ord, Eq) 

! " The compiler will check that the types are 
appropriate to be included in the specified 
classes. 
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Operations: 

! " The prelude also provides a range of functions, 
with restricted polymorphic types: 
(==)     :: Eq a => a -> a -> Bool 

(+)      :: Num a => a -> a -> a 

min      :: Ord a => a -> a -> a 

show     :: Show a => a -> String 

fromInteger  :: Num a => Integer -> a 

! " A type of the form C a => T(a) represents all 
types of the form T(t) for any type t that is an 
instance of the class C 
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Terminology: 

! " An expression of the form C t is often referred to 
as a constraint, a class constraint, or a predicate 

! " A type of the form  C t => …  is often referred to 
as a restricted type or as a qualified type 

! " A collection of predicates (C t, D t’,…) is often 
referred to as a context.  The parentheses can be 
dropped if there is only one element. 
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Type Inference: 

! " Type Inference works just as before, except that 
now we also track constraints. 

! " Example:  null xs = (xs == []) 

!" Assume xs :: a 

!" Pick (==) :: b -> b -> Bool with the constraint Eq b 

!" Pick instance [] :: [c] 

!" From (xs == []), we infer a = b = [c], with result type of 
Bool 

!" Thus:  null :: Eq [c] => [c] -> Bool 
  null :: Eq c => [c] -> Bool 
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… continued: 

! " Note: In this case, it would probably be better to 
use the following definition: 

 null   :: [a] -> Bool 

 null []   = True 

 null (x:xs)  = False 

! " The type [a] -> Bool is more general than 
Eq a => [a] -> Bool, because the latter only 
works with “equality types” 
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Examples: 

! " We can treat the integer literal 0 as sugar for 
(fromInteger 0), and hence use this as a value of 
any numeric type 
!" Strictly speaking, its type is Num a => a, which means 

any type, so long as it’s numeric … 

! " We can use (==) on integers, booleans, floats, or 
lists of any of these types … but not on function 
types 

! " We can use (+) on integers or on floating point 
numbers, but not on Booleans 
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Inheriting Predicates: 

! " Predicates in the type of a function f can 
“infect” the type of a function that calls f 

! " The functions: 
 member xs x = any (x==) xs 

 subset xs ys  = all (member ys) xs 

 have types: 
 member   :: Eq a => [a] -> a -> Bool 

 subset    :: Eq a => [a] -> [a] -> Bool  
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… continued: 

! " For example, now we can define: 
 data Day = Sun|Mon|Tue|Wed|Thu|Fri|Sat 

                   deriving (Eq, Show) 

! " And then apply member and subset to this 
new type: 
Main> member [Mon,Tue,Wed,Thu,Fri] Wed 

True 

Main> subset [Mon,Sun] [Mon,Tue,Wed,Thu,Fri] 

False 

Main>  
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Eliminating Predicates: 

! " Predicates can be eliminated when they are 
known to hold 

! " Given the standard prelude function: 

  sum :: Num a => [a] -> a 

 and a definition 

  gauss = sum [1..10::Integer] 

 we could infer a type 

  gauss :: Num Integer => Integer 

 But then simplify this to 

  gauss :: Integer 
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Detecting Errors: 

Errors can be raised when predicates are known not 
to hold: 

Prelude> 'a' + 1 

ERROR - Cannot infer instance 

*** Instance   : Num Char 

*** Expression : 'a' + 1 

Prelude> (\x -> x) 

ERROR - Cannot find "show" function for: 

*** Expression : \x -> x 

*** Of type    : a -> a 

Prelude> 
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Derived Instances (2): 

! "What if you define a new type and you 
can’t use a derived instance? 
!" Example: data Set a = Set [a] deriving Num 

!" What does it mean to do arithmetic on sets? 

!" How could the compiler figure this out from the 
definition above? 

! "What if you define a new type and the 
derived equality is not what you want? 
!" Example: data Set a = Set [a] 

!" We’d like to think of Set [1,2] and Set [2,1] and 
Set [1,1,1,2,2,1,2] as equivalent sets 
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Example: Derived Equality 

! " The derived equality for Set gives us: 
  Set xs == Set ys  =   xs == ys 

! " And the equality on lists gives us: 
[]   == []     = True 

(x:xs)  == (y:ys) = (x==y) && (xs==ys) 

_   == _       = False 

! " A derived equality function tests for 
structural equality … what we need for 
Set is not a structural equality 
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Class Declarations: 

! " Before we can define an instance, we need to 
look at the class declaration: 

class Eq a where 

    (==), (/=) :: a -> a -> Bool 

    -- Minimal complete definition: (==) or (/=) 

    x == y      = not (x/=y) 

    x /= y       = not (x==y) 

! " To define an instance of equality, we will need to 
provide an implementation for at least one of the 
operators (==) or (/=) 

members 

defaults 
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Member Functions: 

! " In a class declaration 
class C a where 

    f, g, h :: T(a) 

! " member functions receive types of the form 
  f, g, h :: C a => T(a) 

! " From a user’s perspective, just like any other type 
qualified by a predicate 

! " From an implementer’s perspective, these are the 
operations that we have to code to define an 
instance 
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Instance Declarations: 

! " We can define a non-structural equality on the 
Set datatype using the following: 

instance Eq a => Eq (Set a) where 

  Set xs == Set ys 

     =  (xs `subset` ys) && (ys `subset` xs) 

! " This works as we’d like … 
Main> Set [1,1,1,2,2,1,2] == Set [1,2] 

True 

Main> Set [1,2] == Set [3,4] 

False 

Main> Set [2,1] == Set [1,1,1,2,2,1,2]  

True 

Main> 

76 

Overloading: 

! " Type classes support the definition of overloaded 
functions 

! " “Overloading”, because a single identifier can be 
overloaded with multiple interpretations 

! " But just because you can … it doesn’t mean you 
should! 

! " Use judiciously, where appropriate, where there is 
a coherent, unifying view of each overloaded 
function should do 
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Defining New Classes: 

! " Can I define new type classes in my program or 
library? 
!" Yes! 

! " Should I define new type classes in my program 
or library? 
!" Yes, if it makes sense to do so! 

!" What common properties would the instances to share, 
and how should this be reflected in the choice of the 
operators? 

!" Does it make sense for the meaning of a symbol to be 
uniquely determined by the types of the values that are 
involved? 

78 

Beware of Ambiguity! 

! " What if there isn’t enough information to resolve 
overloading? 
!" Early versions of Hugs would report an error if you 

tried to evaluate show [] 

!" The system infers a type Show a => String, and 
doesn’t know what type to pick for the “ambiguous” 
variable a 

!" (It could make a difference:  show ([]::[Int]) = "[]", 
but  show ([]::[Char]) = "\"\"") 

!" Recent versions use defaulting to pick a default choice 
… but the results there are also less than ideal …  
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Summary: 

! " Type classes provide a way to describe sets of 
types and related families of operations that are 
defined on their instances 

! " A range of useful type classes are built-in to the 
prelude 

! " Classes can be extended by deriving new 
instances or defining your own 

! " New classes can also be defined 

! " Once you’ve experienced programming with type 
classes, it’s hard to go without … 


