
1

CS 457/557: Functional
Languages

From Trees to Type Classes

Mark P Jones

Portland State University

Trees:

! " There are many kinds of tree data structure.

! " For example:

data BinTree a = Leaf a

 | BinTree a :^: BinTree a

 deriving Show

! " The “deriving Show” part makes it possible for us
to print out tree values …

2

! " Definition:
example :: BinTree Int

example = l :^: r

 where l = p :^: q

 r = s :^: t

 p = Leaf 1 :^: t

 q = s :^: Leaf 2

 s = Leaf 3 :^: Leaf 4

 t = Leaf 5 :^: Leaf 6

! " At the prompt:
Main> example

((Leaf 1 :^: (Leaf 5 :^: Leaf 6)) :^: ((Leaf

3 :^: Leaf 4) :^: Leaf 2)):^: ((Leaf 3 :^:

Leaf 4) :^: (Leaf 5 :^: Leaf 6))

Main>
3

Wouldn’t it be nice …

If we could view these trees in a graphical form

 ?

4

Mapping on Trees:

! " We can define a mapping operation on trees:

mapTree :: (a -> b) -> BinTree a -> BinTree b

mapTree f (Leaf x) = Leaf (f x)

mapTree f (l :^: r) = mapTree f l :^: mapTree f r

! " This is an analog of the map function on lists; it
applies the function f to each leaf value stored in
the tree.

5

! " Example: convert every leaf value into a string:
Main> mapTree show example

((Leaf "1" :^: (Leaf "5" :^: Leaf

"6")) :^: ((Leaf "3" :^: Leaf "4”) :^:

Leaf "2")) :^: ((Leaf "3" :^: Leaf

"4") :^: (Leaf "5" :^: Leaf "6"))

Main>

! " Example: add one to every leaf value:
Main> mapTree (1+) example

((Leaf 2 :^: (Leaf 6 :^: Leaf 7)) :^: ((Leaf

4 :^: Leaf 5) :^: Leaf 3)):^: ((Leaf 4 :^:

Leaf 5) :^: (Leaf 6 :^: Leaf 7))

Main>

! " Still not very pretty …
6

Visualizing the Results:

If we could view these trees in a graphical form …

7

Visualizing the Results:

If we could view these trees in a graphical form …

8

Visualizing the Results:

… we could see that mapTree preserves shape

Gives insight to the laws:

 mapTree id = id

 mapTree (f . g) = mapTree f . mapTree g

9

Graphviz & Dot:

! " Graphviz is a set of tools for visualizing graph and
tree structures

! " Dot is the language that Graphviz uses for
describing the tree/graph structures to be
visualized.

! " Usage: dot -Tpng file.dot > file.png

10

Example:

! " To describe (Leaf "a" :^: Leaf "b" :^: Leaf "c"):

digraph tree {

 "1" [label=""];

 "1" -> "2";

 "2" [label=""];

 "2" -> "3";

 "3" [label="a"];

 "2" -> "4";

 "4" [label="b"];

 "1" -> "5";

 "5" [label="c"];

}
11

General Form:

A dot file contains a description of the form
digraph name { stmts } where each stmt is either

! " node_id [label="text"];
constructs a node with the specified id and label.

! " node_id -> node_id;
constructs an edge between the specified pair of
nodes.

[Actually, there are many more options than this!]
12

From BinTree to dot:

How can we convert a BinTree value into a dot file?

For simplicity, assume a BinTree String input.

Labels:

! " Label leaf nodes with the corresponding strings

! " Label internal nodes with the empty string

Node ids:

! " What should we use for node ids?

13

Paths:

Every node can be identified by a unique path:

! " The root node of a tree has path []

! " The nth child of a node with path p has path (n:p)

type Path = [Int]

type NodeId = String

showPath :: Path -> NodeId

showPath p = "\"" ++ show p ++ "\""

14

Add “quotes” to
avoid confusing
Graphviz tools

Example:

15

Actual dot code:

! " To describe (Leaf "a" :^: Leaf "b" :^: Leaf "c"):

digraph tree {

"[]" [label=""];

"[]" -> "[1]";

"[1]" [label=""];

"[1]" -> "[1,1]";

"[1,1]" [label="a"];

"[1]" -> "[2,1]";

"[2,1]" [label="b"];

"[]" -> "[2]";

"[2]" [label="c"];

}
16

Capturing “Tree”-ness:

subtrees :: BinTree a -> [BinTree a]

subtrees (Leaf x) = []

subtrees (l :^: r) = [l, r]

nodeLabel :: BinTree String -> String

nodeLabel (Leaf x) = x

nodeLabel (l :^: r) = ""

17

Trees -> dot Statements:

nodeTree :: Path -> BinTree String -> [String]

nodeTree p t

 = [showPath p ++ " [label=\"" ++ nodeLabel t ++ "\"]"]

 ++ concat (zipWith (edgeTree p) [1..] (subtrees t))

edgeTree :: Path -> Int -> BinTree String -> [String]

edgeTree p n c

 = [showPath p ++ " -> " ++ showPath p']

++ nodeTree p' c

 where p' = n : p

18

A Top-level Converter:

toDot :: BinTree String -> IO ()

toDot t = writeFile "tree.dot"

 ("digraph tree {\n"

 ++ semi (nodeTree [] t)

 ++ "}\n")

 where semi = foldr (\l ls -> l ++ ";\n" ++ ls) "”

Now we can generate dot code for our example tree:

Main> toDot (mapTree show example)

Main> !dot -Tpng tree.dot > ex.png

Main>

19

What About Other Tree Types?

data LabTree l a = Tip a

 | LFork l (LabTree l a) (LabTree l a)

data STree a = Empty

 | Split a (STree a) (STree a)

data RoseTree a = Node a [RoseTree a]

data Expr = Var String

 | IntLit Int

 | Plus Expr Expr

 | Mult Expr Expr

Can I also visualize these using Graphviz?
20

Higher-Order Functions:

Essential tree structure is captured using the
subtrees and nodeLabel functions.

What if we abstract these out as parameters?

nodeTree' :: (t -> String) ->

 (t -> [t]) ->

 Path -> t -> [String]

edgeTree' :: (t -> String) ->

 (t -> [t]) ->

 Path -> Int -> t -> [String]

21

Adding the Parameters:

nodeTree' lab sub p t

 = [showPath p ++ " [label=\"" ++ lab t ++ "\"]"]

 ++ concat (zipWith (edgeTree' lab sub p) [1..] (sub t))

edgeTree' lab sub p n c

 = [showPath p ++ " -> " ++ showPath p']

 ++ nodeTree' lab sub p' c

 where p' = n : p

toDot' :: (t -> String) -> (t -> [t]) -> t -> IO ()

toDot' lab sub t

 = writeFile "tree.dot”

 ("digraph tree {\n” ++ semi (nodeTree' lab sub [] t) ++ "}\n")

 where semi = foldr (\l ls -> l ++ ";\n" ++ ls) ""

22

Alternative (Local Definitions):

toDot'' :: (t -> String) -> (t -> [t]) -> t -> IO ()

toDot'' lab sub t

 = writeFile "tree.dot"

 ("digraph tree {\n" ++ semi (nodeTree' [] t) ++ "}\n")

 where

 semi = foldr (\l ls -> l ++ ";\n" ++ ls) "”

 nodeTree' p t

 = [showPath p ++ " [label=\"" ++ lab t ++ "\"]"]

 ++ concat (zipWith (edgeTree' p) [1..] (sub t))

 edgeTree' p n c

 = [showPath p ++ " -> " ++ showPath p'] ++ nodeTree' p' c

 where p' = n : p

23

Specializing to Tree Types:

toDotBinTree = toDot' lab sub

 where lab (Leaf x) = x

 lab (l :^: r) = ""

 sub (Leaf x) = []

 sub (l :^: r) = [l, r]

toDotLabTree = toDot' lab sub

 where lab (Tip a) = a

 lab (LFork s l r) = s

 sub (Tip a) = []

 sub (LFork s l r) = [l, r]

toDotRoseTree = toDot' lab sub

 where lab (Node x cs) = x

 sub (Node x cs) = cs 24

… continued:

toDotSTree = toDot' lab sub

 where lab Empty = ""

 lab (Split s l r) = s

 sub Empty = []

 sub (Split s l r) = [l, r]

toDotExpr = toDot' lab sub

 where lab (Var s) = s

 lab (IntLit n) = show n

 lab (Plus l r) = "+"

 lab (Mult l r) = "*"

 sub (Var s) = []

 sub (IntLit n) = []

 sub (Plus l r) = [l, r]

 sub (Mult l r) = [l, r] 25

Example:

toDotRoseTree

 (Node "a" [Node "b" [],

 Node "c" [],

 Node "d" [Node "e" []]])

26

Example:

toDotExpr (Plus (Mult (Var "x") (IntLit 3))

 (Mult (Var "y") (IntLit 5)))

27 28

Good and Bad:

Good:

! " It works!

! " It is general (applies to multiple tree types)

! " It provides some reuse

! " It reveals important role for subtrees/labelNode

Bad:

! " It’s ugly and verbose

! " For any given tree type, there’s really only one
sensible way to define the subtrees function …

29

Type Classes:

What distinguishes "tree types" from other types?

a value of a tree type can have zero or more
subtrees

And, for any given tree type, there's really only one
sensible way to do this.

 class Tree t where

 subtrees :: t -> [t]

30

For Instance(s):

instance Tree (BinTree a) where

 subtrees (Leaf x) = []

 subtrees (l :^: r) = [l, r]

instance Tree (LabTree l a) where

 subtrees (Tip a) = []

 subtrees (LFork s l r) = [l, r]

instance Tree (STree a) where

 subtrees Empty = []

 subtrees (Split s l r) = [l, r]

31

… continued:

instance Tree (RoseTree a) where

 subtrees (Node x cs) = cs

instance Tree Expr where

 subtrees (Var s) = []

 subtrees (IntLit n) = []

 subtrees (Plus l r) = [l, r]

 subtrees (Mult l r) = [l, r]

So What?

32

Generic Operations on Trees:

depth :: Tree t => t -> Int

depth = (1+) . foldl max 0 . map depth . subtrees

size :: Tree t => t -> Int

size = (1+) . sum . map size . subtrees

paths :: Tree t => t -> [[t]]

paths t | null br = [[t]]

 | otherwise = [t:p | b <- br, p <- paths b]

 where br = subtrees t

dfs :: Tree t => t -> [t]

dfs t = t : concat (map dfs (subtrees t))

Tree t => means “any type t, so long as it is a Tree
type …” (i.e., so long as it has a subtrees function)

Implicit Parameterization:

! " An operation with a type Tree t => … is implicitly
parameterized by the definition of a subtrees
function of type t -> [t]

! " (The implementation doesn’t have to work this
way …)

! " Because there is at most one such function for
any given type t, there is no need for us to write
the subtrees parameter explicitly

! " That’s good because it can mean less clutter,
more clarity

33

Labeled Trees:

! " To be able to convert trees into dot format, we
need the nodes to be labeled with strings.

! " Not all trees are labeled in this way, so we create
a subclass

 class Tree t => LabeledTree t where

 label :: t -> String

! " (Is this an appropriate use of overloading?)

34

LabeledTree Instances:

instance LabeledTree (BinTree String) where

 label (Leaf x) = x

 label (l :^: r) = ""

instance LabeledTree (LabTree String String) where

 label (Tip a) = a

 label (LFork s l r) = s

instance LabeledTree (STree String) where

 label Empty = ""

 label (Split s l r) = s

35
Needs hugs -98, for example

… continued:

instance LabeledTree (RoseTree String) where

 label (Node x cs) = x

instance LabeledTree Expr where

 label (Var s) = s

 label (IntLit n) = show n

 label (Plus l r) = "+"

 label (Mult l r) = "*"

36

Generic Tree -> dot:

toDot :: LabeledTree t => t -> IO ()

toDot t = writeFile "tree.dot"

 ("digraph tree {\n"

 ++ semi (nodeTree [] t) ++ "}\n")

 where semi = foldr (\l ls -> l ++ ";\n" ++ ls) "”

nodeTree :: LabeledTree t => Path -> t -> [String]

nodeTree p t

 = [showPath p ++ " [label=\"" ++ label t ++ "\"]"]

 ++ concat (zipWith (edgeTree p) [1..] (subtrees t))

edgeTree :: LabeledTree t => Path -> Int -> t -> [String]

edgeTree p n c = [showPath p ++ " -> " ++ showPath p']

 ++ nodeTree p' c

 where p' = n : p

37

Example:

toDot (Node "a" [Node "b" [],

 Node "c" [],

 Node "d" [Node "e" []]])

38

Example:

toDot (Plus (Mult (Var "x") (IntLit 3))

 (Mult (Var "y") (IntLit 5)))

39

Example:

Main> toDot example

ERROR - Unresolved overloading

*** Type : LabeledTree (BinTree Int) => IO ()

*** Expression : toDot example

Main>

40

We need trees labeled
with strings …

Example:

Main> toDot example

ERROR - Unresolved overloading

*** Type : LabeledTree (BinTree Int) => IO ()

*** Expression : toDot example

Main> toDot (mapTree show example)

Main>

41

mapTree :: (a -> b) -> BinTree a -> BinTree b
mapTree f (Leaf x) = Leaf (f x)
mapTree f (l :^: r) = mapTree f l :^: mapTree f r

The Functor Class:

class Functor f where

 fmap :: (a -> b) -> f a -> f b

instance Functor [] where ...

instance Functor Maybe where ...

-- fmap id == id

-- fmap (f . g) == fmap f . fmap g

42

Tree Instances:
instance Functor BinTree where

 fmap f (Leaf x) = Leaf (f x)

 fmap f (l :^: r) = fmap f l :^: fmap f r

instance Functor (LabTree l) where

 fmap f (Tip a) = Tip (f a)

 fmap f (LFork s l r) = LFork s (fmap f l) (fmap f r)

instance Functor STree where

 fmap f Empty = Empty

 fmap f (Split s l r) = Split (f s) (fmap f l) (fmap f r)

instance Functor RoseTree where

 fmap f (Node x cs) = Node (f x) (map (fmap f) cs)

43

Why no instance for Expr?

Example:

Main> toDot (fmap show (example :^: example))

Main> depth (example :^: example)

6

Main>

44

Type Classes:

! " We’ve been exploring one of the most novel
features that was introduced in the design of
Haskell

! " Similar ideas are now filtering in to other popular
languages (e.g., “concepts” in C++)

! " We’ll spend the rest of our time in this lecture
looking at the original motivation for type classes

45 46

Between One and All:

! " Haskell allows us to define (monomorphic)
functions that have just one possible
instantiation:

 not :: Bool -> Bool

! " And (polymorphic) functions that work for all
instantiations:

 id :: a -> a

! " But not all functions fit comfortably into these two
categories …

47

Addition:

! " What type should we use for the addition
operator (+)?

! " Picking a monomorphic type like

 Int -> Int -> Int

 is too limiting, because this can’t be applied to
other numeric types

! " Picking a polymorphic type like

 a -> a -> a

 is too general, because addition only works for
“numeric types” …

48

Equality:

! " What type should we use for the equality
operator (==)?

! " Picking a monomorphic type like

 Int -> Int -> Bool

 is too limiting, because this can’t be applied to
other numeric types

! " Picking a polymorphic type like

 a -> a -> Bool

 is too general, because there is no computable
equality on function types …

49

Numeric Literals:

! " What type should we use for the type of the
numeric literal 0?

! " Picking a monomorphic type like Int is too
limiting, because then it can’t be used for other
numeric types
!" And functions like sum = foldl (+) 0 inherit the same

restriction and can only be used on limited types

! " Picking a polymorphic type like a is too general,
because there is no meaningful interpretation for
zero at all types …

50

Workarounds (1):

! " We could use different names for the different
versions of an operator at different types:

!" (+) :: Int -> Int -> Int

!" (+’) :: Float -> Float -> Float

!" (+’’) :: Integer -> Integer -> Integer

!" …

! " Apart from the fact that this is really ugly, it
prevents us from defining general functions that
use addition (again, sum = foldl (+) 0)

51

Workarounds (2):

! " We could just define the “unsupported” cases
with dummy values.

!" 0 :: Int produces an integer zero

!" 0 :: Float produces a floating point zero

!" 0 :: Int -> Bool produces some undefined value (e.g.,
sends the program into an infinite loop)

! " Attitude: “More fool you, programmer, for using
zero with an inappropriate type!”

52

! " We could inspect the values of arguments that
are passed in to each function to determine which
interpretation is required.

! " Works for (+) and (==) (although still requires
that we assign a polymorphic type, so those
problems remain)

! " But it won’t work for 0. There are no arguments
here from which to infer the type of zero that is
required; that information can only be determined
from the context in which it is used.

Workarounds (3):

53

Workarounds (4):

! " Miranda and Orwell (two predecessors of Haskell)
included a type called “Num” that included both
floating point numbers and integers in the same
type

 data Num = In Integer | Fl Float

! " Now (+) can be treated as a function of type
Num -> Num -> Num and applied to either
integers or floats, or even mixed argument types.

! " But we’ve lost a lot: types don’t tell us as much,
and basic arithmetic operations are more
expensive to implement …

54

Between a rock …

! " In these examples, monomorphic types are too
restrictive, but polymorphic types are too general.

! " In designing the language, the Haskell Committee
had planned to take a fairly conservative
approach, consolidating the good ideas from
other languages that were in use at the time.

! " But the existing languages used a range of
awkward and ad-hoc techniques and nobody had
a good, general solution to this problem …

55

“How to make ad-hoc
polymorphism less ad-hoc”

! " In 1989, Philip Wadler and Stephen Blott
proposed an elegant, general solution to these
problems

! " Their approach was to introduce a way of talking
about sets of types (“Type Classes”) and their
elements (“Instances”)

! " The Haskell committee decided to incorporate this
innocent and attractive idea into the first version
of Haskell …

56

Type Classes:

! " A type class is a set of types

! " Haskell provides several built-in type
classes, including:
!" Eq: types whose elements can be compared for

equality

!" Num: numeric types

!" Show: types whose values can be printed as
strings

!" Integral: types corresponding to integer values,

!" Enum: types whose values can be enumerated
(and hence used in [m..n] notation)

57

A (Not-Well Kept) Secret:

! " Users can define their own type classes

! " This can sometimes be very useful

! " It can also be abused

! " For now, we’ll just focus on understanding and
using the built-in type classes …

58

Instances:

! " The elements of a type class are known as the
instances of the class

! " If C is a class and t is a type, then we write C t
to indicate that t is an element/instance of C

! " (Maybe we should have used t!C, but the !
symbol wasn’t available in the character sets or
on the keyboards of last century’s computers
… :-)

59

Instance Declarations:

! " The instances of a class are specified by a
collection of instance declarations:
instance Eq Int

instance Eq Integer

instance Eq Float

instance Eq Double

instance Eq Bool

instance Eq a => Eq [a]

instance Eq a => Eq (Maybe a)

instance (Eq a, Eq b) => Eq (a,b)

…

60

… continued:

! " In set notation, this is equivalent to saying that:

 Eq = { Int, Integer, Float, Double, Bool }
 " { [t] | t ! Eq }
 " { Maybe t | t ! Eq }
 " { (t1, t2) | t1 ! Eq, t2 ! Eq }

! " Eq is an infinite set of types, but it doesn’t include
all types (e.g., types like Int -> Int and [[Int] ->
Bool] are not included)

61

Derived Instances (1):

! " The prelude provides a number of types with
instance declarations that include those types in
the appropriate classes

! " Classes can also be extended with definitions for
new types by using a deriving clause:
data T = … deriving Show

data S = … deriving (Show, Ord, Eq)

! " The compiler will check that the types are
appropriate to be included in the specified
classes.

62

Operations:

! " The prelude also provides a range of functions,
with restricted polymorphic types:
(==) :: Eq a => a -> a -> Bool

(+) :: Num a => a -> a -> a

min :: Ord a => a -> a -> a

show :: Show a => a -> String

fromInteger :: Num a => Integer -> a

! " A type of the form C a => T(a) represents all
types of the form T(t) for any type t that is an
instance of the class C

63

Terminology:

! " An expression of the form C t is often referred to
as a constraint, a class constraint, or a predicate

! " A type of the form C t => … is often referred to
as a restricted type or as a qualified type

! " A collection of predicates (C t, D t’,…) is often
referred to as a context. The parentheses can be
dropped if there is only one element.

64

Type Inference:

! " Type Inference works just as before, except that
now we also track constraints.

! " Example: null xs = (xs == [])

!" Assume xs :: a

!" Pick (==) :: b -> b -> Bool with the constraint Eq b

!" Pick instance [] :: [c]

!" From (xs == []), we infer a = b = [c], with result type of
Bool

!" Thus: null :: Eq [c] => [c] -> Bool
 null :: Eq c => [c] -> Bool

65

… continued:

! " Note: In this case, it would probably be better to
use the following definition:

 null :: [a] -> Bool

 null [] = True

 null (x:xs) = False

! " The type [a] -> Bool is more general than
Eq a => [a] -> Bool, because the latter only
works with “equality types”

66

Examples:

! " We can treat the integer literal 0 as sugar for
(fromInteger 0), and hence use this as a value of
any numeric type
!" Strictly speaking, its type is Num a => a, which means

any type, so long as it’s numeric …

! " We can use (==) on integers, booleans, floats, or
lists of any of these types … but not on function
types

! " We can use (+) on integers or on floating point
numbers, but not on Booleans

67

Inheriting Predicates:

! " Predicates in the type of a function f can
“infect” the type of a function that calls f

! " The functions:
 member xs x = any (x==) xs

 subset xs ys = all (member ys) xs

 have types:
 member :: Eq a => [a] -> a -> Bool

 subset :: Eq a => [a] -> [a] -> Bool

68

… continued:

! " For example, now we can define:
 data Day = Sun|Mon|Tue|Wed|Thu|Fri|Sat

 deriving (Eq, Show)

! " And then apply member and subset to this
new type:
Main> member [Mon,Tue,Wed,Thu,Fri] Wed

True

Main> subset [Mon,Sun] [Mon,Tue,Wed,Thu,Fri]

False

Main>

69

Eliminating Predicates:

! " Predicates can be eliminated when they are
known to hold

! " Given the standard prelude function:

 sum :: Num a => [a] -> a

 and a definition

 gauss = sum [1..10::Integer]

 we could infer a type

 gauss :: Num Integer => Integer

 But then simplify this to

 gauss :: Integer

70

Detecting Errors:

Errors can be raised when predicates are known not
to hold:

Prelude> 'a' + 1

ERROR - Cannot infer instance

*** Instance : Num Char

*** Expression : 'a' + 1

Prelude> (\x -> x)

ERROR - Cannot find "show" function for:

*** Expression : \x -> x

*** Of type : a -> a

Prelude>

71

Derived Instances (2):

! "What if you define a new type and you
can’t use a derived instance?
!" Example: data Set a = Set [a] deriving Num

!" What does it mean to do arithmetic on sets?

!" How could the compiler figure this out from the
definition above?

! "What if you define a new type and the
derived equality is not what you want?
!" Example: data Set a = Set [a]

!" We’d like to think of Set [1,2] and Set [2,1] and
Set [1,1,1,2,2,1,2] as equivalent sets

72

Example: Derived Equality

! " The derived equality for Set gives us:
 Set xs == Set ys = xs == ys

! " And the equality on lists gives us:
[] == [] = True

(x:xs) == (y:ys) = (x==y) && (xs==ys)

_ == _ = False

! " A derived equality function tests for
structural equality … what we need for
Set is not a structural equality

73

Class Declarations:

! " Before we can define an instance, we need to
look at the class declaration:

class Eq a where

 (==), (/=) :: a -> a -> Bool

 -- Minimal complete definition: (==) or (/=)

 x == y = not (x/=y)

 x /= y = not (x==y)

! " To define an instance of equality, we will need to
provide an implementation for at least one of the
operators (==) or (/=)

members

defaults

74

Member Functions:

! " In a class declaration
class C a where

 f, g, h :: T(a)

! " member functions receive types of the form
 f, g, h :: C a => T(a)

! " From a user’s perspective, just like any other type
qualified by a predicate

! " From an implementer’s perspective, these are the
operations that we have to code to define an
instance

75

Instance Declarations:

! " We can define a non-structural equality on the
Set datatype using the following:

instance Eq a => Eq (Set a) where

 Set xs == Set ys

 = (xs `subset` ys) && (ys `subset` xs)

! " This works as we’d like …
Main> Set [1,1,1,2,2,1,2] == Set [1,2]

True

Main> Set [1,2] == Set [3,4]

False

Main> Set [2,1] == Set [1,1,1,2,2,1,2]

True

Main>

76

Overloading:

! " Type classes support the definition of overloaded
functions

! " “Overloading”, because a single identifier can be
overloaded with multiple interpretations

! " But just because you can … it doesn’t mean you
should!

! " Use judiciously, where appropriate, where there is
a coherent, unifying view of each overloaded
function should do

77

Defining New Classes:

! " Can I define new type classes in my program or
library?
!" Yes!

! " Should I define new type classes in my program
or library?
!" Yes, if it makes sense to do so!

!" What common properties would the instances to share,
and how should this be reflected in the choice of the
operators?

!" Does it make sense for the meaning of a symbol to be
uniquely determined by the types of the values that are
involved?

78

Beware of Ambiguity!

! " What if there isn’t enough information to resolve
overloading?
!" Early versions of Hugs would report an error if you

tried to evaluate show []

!" The system infers a type Show a => String, and
doesn’t know what type to pick for the “ambiguous”
variable a

!" (It could make a difference: show ([]::[Int]) = "[]",
but show ([]::[Char]) = "\"\"")

!" Recent versions use defaulting to pick a default choice
… but the results there are also less than ideal …

79

Summary:

! " Type classes provide a way to describe sets of
types and related families of operations that are
defined on their instances

! " A range of useful type classes are built-in to the
prelude

! " Classes can be extended by deriving new
instances or defining your own

! " New classes can also be defined

! " Once you’ve experienced programming with type
classes, it’s hard to go without …

