
Cse536 Functional Programming

11/14/2010

Trees

•Today’s Topics
– Trees

– Kinds of trees - branching factor

–functions over trees

–patterns of recursion - the fold for trees

–Arithmetic expressions

–Infinite trees

Cse536 Functional Programming

21/14/2010

Trees

• Trees are important data structures in computer
science

• Trees have interesting properties
– They usually are finite, but unbounded in size

– Sometimes contain other types inside

– Sometimes the things contained are polymorphic

– differing “branching factors”

– different kinds of leaf and branching nodes

• Lots of interesting things can be modeled by trees
– lists (linear branching)

– arithmetic expressions

– parse trees (for languages)

• In a lazy language it is possible to have infinite trees

Cse536 Functional Programming

31/14/2010

Examples
data List a = Nil | MkList a (List a)

data Tree a = Leaf a | Branch (Tree a) (Tree a)

data IntegerTree = IntLeaf Integer

| IntBranch IntegerTree IntegerTree

data SimpleTree = SLeaf

| SBranch SimpleTree SimpleTree

data InternalTree a = ILeaf

| IBranch a (InternalTree a)

(InternalTree a)

data FancyTree a b = FLeaf a

| FBranch b (FancyTree a b)

(FancyTree a b)

Cse536 Functional Programming

41/14/2010

Match up the trees
• IntegerTree

• Tree

• SimpleTree

• List

• InternalTree

• FancyTree

A B

A

B C

2

6 9

A

B

A

B
i

j k

Cse536 Functional Programming

51/14/2010

Functions on Trees

• Transforming one kind of tree into another

mapTree :: (a->b) -> Tree a -> Tree b

mapTree f (Leaf x) = Leaf (f x)

mapTree f (Branch t1 t2) = Branch (mapTree f t1)

(mapTree f t2)

• Collecting the items in a tree

fringe :: Tree a -> [a]

fringe (Leaf x) = [x]

fringe (Branch t1 t2) = fringe t1 ++ fringe t2

• what kind of information is lost using fringe?

Cse536 Functional Programming

61/14/2010

More functions

treeSize :: Tree a -> Integer

treeSize (Leaf x) = 1

treeSize (Branch t1 t2) = treeSize t1 + treeSize t2

treeHeight :: Tree a -> Integer

treeHeight (Leaf x) = 0

treeHeight (Branch t1 t2) = 1 + max (treeHeight t1)

(treeHeight t2)

Cse536 Functional Programming

71/14/2010

Capture the pattern of recursion

foldTree :: (a -> a -> a) -> (b -> a) -> Tree b -> a

foldTree b l (Leaf x) = l x

foldTree b l (Branch t1 t2) = b (foldTree b l t1)

(foldTree b l t2)

mapTree2 f = foldTree Branch (Leaf . f)

fringe2 = foldTree (++) (\ x -> [x])

treeSize2 = foldTree (+) (const 1)

treeHeight2 = foldTree (\ x y -> 1 + max x y)

(const 0)

Cse536 Functional Programming

81/14/2010

Flattening Trees

data Tree a

= Leaf a | Branch (Tree a) (Tree a)

flatten :: Tree a -> [a]

flatten (Leaf x) = [x]

flatten (Branch x y) = flatten x ++ flatten y

What is the complexity of flattening a deep fully filled out
tree?

Cse536 Functional Programming

91/14/2010

Flattening with accumulating parameter

data Tree a

= Leaf a | Branch (Tree a) (Tree a)

flatten :: Tree a -> [a]

Flatten t = flat t []

flat (Leaf x) xs = x:xs

Flat (Branch a b) = flat a (flat b xs)

Cse536 Functional Programming

101/14/2010

Arithmetic Expressons

data Expr2 = C2 Float

| Add2 Expr2 Expr2

| Sub2 Expr2 Expr2

| Mul2 Expr2 Expr2

| Div2 Expr2 Expr2

• using infix constructor functions

data Expr = C Float

| Expr :+ Expr

| Expr :- Expr

| Expr :* Expr

| Expr :/ Expr

Infix constructor operators start

with a colon (:) , just like

constructor functions start with

an upper case letter

Cse536 Functional Programming

111/14/2010

Example uses

e1 = (C 10 :+ (C 8 :/ C 2)) :* (C 7 :- C 4)

evaluate :: Expr -> Float

evaluate (C x) = x

evaluate (e1 :+ e2) = evaluate e1 + evaluate e2

evaluate (e1 :- e2) = evaluate e1 - evaluate e2

evaluate (e1 :* e2) = evaluate e1 * evaluate e2

evaluate (e1 :/ e2) = evaluate e1 / evaluate e2

Main> evaluate e1

42.0

Cse536 Functional Programming

121/14/2010

Infinite Trees

• Can we make an Expr tree that represents the
infinite expression: 1 + 2 + 3 + 4 ….

sumFromN n = C n :+ (sumFromN (n+1))

sumAll = sumFromN 1

add1 (C n) = C (n+1)

add1 (x :+ y) = add1 x :+ add1 y

add1 (x :- y) = add1 x :- add1 y

add1 (x :* y) = add1 x :* add1 y

add1 (x :/ y) = add1 x :/ add1 y

sumAll2 = C 1 :+ (add1 sumAll2)

Cse536 Functional Programming

131/14/2010

Observing Infinite Trees

• We can observe an infinite tree by printing a finite
prefix of it. We need a take-like function for trees.

showE 0 _ = "..."

showE n (C m) = show m

showE n (x :+ y) = "(" ++ (showE (n-1) x) ++ "+"

++ (showE (n-1) y) ++ ")"

Main> showE 5 sumAll2

"(1.0+(2.0+(3.0+(4.0+(...+...)))))"

Main> showE 5 sumAll

"(1.0+(2.0+(3.0+(4.0+(...+...)))))"

