
Putting Laziness to Work



Why use laziness

• Laziness has lots of interesting uses
– Build cyclic structures. Finite representations of 

infinite data.

– Do less work, compute only those values demanded 
by the final result.

– Build infinite intermediate data structures and actually 
materialize only those parts of the structure of 
interest.
• Search based solutions using enumerate then test .

– Memoize or remember past results so that they don’t 
need to be recomputed



Cyclic structures

• cycles:: [Int]

• cycles = 1 : 2 : 3 : cycles

1 2 3



Cyclic Trees

• data Tree a = Tip a | Fork (Tree a) (Tree a)

• t2 = Fork (Fork (Tip 3) (Tip 4)) (Fork (Tip 9) t2)

Fork

Fork Fork

Tip 3 Tip 4 Tip 9



Mutually Cyclic

(t3,t4) = ( Fork (Fork (Tip 11) t3) t4

, Fork (Tip 21) (Fork (Tip 33) t3)

)
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Prime numbers and infinite lists

primes :: [Integer]

primes = sieve [2..]

where sieve (p:xs) =

p : sieve [x | x<-xs

, x `mod` p /= 0]



Dynamic Programming
• Consider the function

fib :: Integer -> Integer

fib 0 = 1

fib 1 = 1

fib n = fib (n-1) + fib (n-2)

LazyDemos> :set +s

LazyDemos> fib 30

1346269

(48072847 reductions, 78644372 cells, 1 garbage 
collection)

• takes about 9 seconds on my machine!



Why does it take so long?

• Consider (fib 6)
fib 6
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What if we could remember past results?

• Strategy
– Create a data structure

– Store the result for every (fib n) only if (fib n) is 
demanded.

– If it is ever demanded again return the result in 
the data structure rather than re-compute it

• Laziness is crucial

• Constant time access is also crucial
– Use of functional arrays



Lazy Arrays

import Data.Array

table = array (1,5)

[(1,'a'),(2,'b'),(3,'c'),(5,'e'),(4,'d')]

• The array is created once

• Any size array can be created

• Slots cannot be over written

• Slots are initialized by the list

• Constant access time to value stored in every slot



Taming the duplication

fib2 :: Integer -> Integer

fib2 z = f z

where table = array (0,z) [ (i, f i) | i <- range (0,z) ]

f 0 = 1

f 1 = 1

f n = (table ! (n-1)) + (table ! (n-2))

LazyDemos> fib2 30

1346269

(4055 reductions, 5602 cells)

Result is instantaneous on my machine



Can we abstract over this pattern?

• Can we write a memo function that memoizes
another function.

• Allocates an array

• Initializes the array with calls to the function

• But, We need a way to intercept recursive calls



A fixpoint operator does the trick

• fix f = f (fix f)

• g fib 0 = 1

• g fib 1 = 1

• g fib n = fib (n-1) + fib (n-2)

• fib1 = fix g



Generalizing

memo :: Ix a => (a,a) -> ((a -> b) -> a -> b) -> a -> b

memo bounds g = f

where arrayF = array bounds 

[ (n, g f n) | n <- range bounds ]

f x = arrayF ! x

fib3 n = memo (0,n) g n

fact = memo (0,100) g

where g fact n = 

if n==0 then 1 else n * fact (n-1)



Representing 
Graphs

import ST

import qualified Data.Array as A

type Vertex  = Int

-- Representing graphs:

type Table a = A.Array Vertex a

type Graph   = Table [Vertex]

-- Array Int [Int]

Index for each 
node

Edges (out of) 
that index

1
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1 [2,3]

2 [7,4]

3 [5]

4 [6,9,7]

5 [8]

6 [9]

7 [9]

8 [10]

9 [10]

10 []



Functions on graphs

type Vertex = Int

type Edge = (Vertex,Vertex)

vertices :: Graph -> [Vertex]

indices :: Graph -> [Int]

edges :: Graph -> [Edge]



Building 
Graphs

buildG :: Bounds -> [Edge] -> Graph

graph = buildG (1,10)

[ (1, 2),  (1, 6),  (2, 3),

(2, 5),  (3, 1),  (3, 4),

(5, 4),  (7, 8),  (7, 10),

(8, 6),  (8, 9),  (8, 10) ]
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DFS and Forests

data Tree a   = Node a (Forest a)  

type Forest a = [Tree a]

nodesTree (Node a f) ans = 

nodesForest f (a:ans)

nodesForest [] ans = ans

nodesForest (t : f) ans = 

nodesTree t (nodesForest f ans)

• Note how any tree can be spanned 
• by a Forest. The Forest is not always
• unique.
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DFS

• The DFS algorithm finds a spanning forest for a 
graph, from a set of roots.

dfs :: Graph -> [Vertex] -> Forest Vertex

dfs :: Graph -> [Vertex] -> Forest Vertex

dfs g vs = prune (A.bounds g) (map (generate g) vs)

generate     :: Graph -> Vertex -> Tree Vertex

generate g v  = Node v (map (generate g) (g `aat` v))

Array indexing

An infinite 
cyclic tree



Sets of nodes already visited

import qualified Data.Array.ST as B

type Set s    = B.STArray s Vertex Bool

mkEmpty :: Bounds -> ST s (Set s)

mkEmpty bnds = newSTArray bnds False

contains     :: Set s -> Vertex -> ST s Bool

contains m v  = readSTArray m v

include      :: Set s -> Vertex -> ST s ()

include m v   = writeSTArray m v True

Mutable array



Pruning already visited paths

prune :: Bounds -> Forest Vertex -> Forest Vertex

prune bnds ts = 

runST (do { m <- mkEmpty bnds; chop m ts })

chop :: Set s -> Forest Vertex -> ST s (Forest Vertex)

chop m []     = return []

chop m (Node v ts : us)

do { visited <- contains m v

; if visited

then chop m us

else do { include m v

; as <- chop m ts

; bs <- chop m us

; return(Node v as : bs)

}

}



Topological Sort

postorder :: Tree a -> [a]

postorder (Node a ts) = postorderF ts ++ [a]

postorderF :: Forest a -> [a]

postorderF ts = concat (map postorder ts)

postOrd :: Graph -> [Vertex]

postOrd = postorderF . Dff

dff :: Graph -> Forest Vertex

dff g         = dfs g (vertices g)
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A. Control Flow Graph
a :: Graph Char a

B. DFS Labeled Graph
b :: Graph Char (Int,[Char])

dfsnum :: v->Int

dfsnum v = fst(apply b v)

dfspath:: v->[v]

dfspath v = snd(apply b v)
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C. Semi-Dominator 
Labeled Graph

c :: Graph Char Char

semi :: v->v

semi = apply c
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D. Semi-Dominator Graph
d :: Graph Char a
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E. Dominator Graph
e :: Graph Char a

dfslabel f map g induce


