CS 457/557: Functional Languages

Lists and Algebraic Datatypes

Mark P Jones
Portland State University

Why Lists?

- Lists are a heavily used data structure in many functional programs
- Special syntax is provided to make programming with lists more convenient
- Lists are a special case / an example of:
- An algebraic datatype (coming soon)
- A parameterized datatype (coming soon)
- A monad (coming, but a little later)

Naming Convention:

- We often use a simple naming convention:
- If a typical value in a list is called x, then a typical list of such values might be called xs
(i.e., the plural of x)
- ... and a list of lists of values called x might be called xss
- A simple convention, minimal clutter, and a useful mnemonic too!

Prelude Functions:

(++) :: [a] -> [a] -> [a]
reverse :: [a] -> [a]
take :: Int -> [a] -> [a]
drop :: Int -> [a] -> [a]
takeWhile :: (a -> Bool) -> [a] -> [a]
dropWhile :: (a -> Bool) -> [a] -> [a]
replicate :: Int -> a -> [a]
iterate :: (a-> a) -> a -> [a]
repeat :: a -> [a]

Constructor Functions:

- What if you can't find a function in the prelude that will do what you want to do?
- Every list takes the form:
- [], an empty list
- (x:xs), a non-empty list whose first element is x, and whose tail is xs
* Equivalently: the list type has two constructor functions:
- The constant [] :: [a]
- The operator (:) :: a -> [a] -> [a]
- Using "pattern matching", we can also take lists apart ...

Functions on Lists:

$\begin{array}{ll}\text { null } & ::[\mathrm{a}]->\text { Bool } \\ \text { null }[] & =\text { True } \\ \text { null (x:xs) } & =\text { False }\end{array}$
head :: [a] -> a
head ($x: x s$) $=x$
tail :: [a] -> [a]
tail (x:xs) = xs

Recursive Functions:

last
last (x:[]) $=x$
last (x:y:xs) $\quad=$ last ($y: x s$)
init
init (x:[])
:: [a] -> [a]
init (x:y:xs)
$=[]$
$=x$: init ($y: x s$)
map :: (a -> b) -> [a] -> [b]
$\operatorname{map} f[] \quad=[]$
$\operatorname{map} f(x: x s)=f x: m a p f x s$

continued:

subsets
subsets []
subsets (x:xs)
:: [a] -> [[a]]
= [[]]
= [] : map (x:) (inits xs)
:: [a] -> [[a]]
= [[]]
= subsets xs ++ map (x:) (subsets xs))

Why Does This Work?

$\stackrel{\text { What does it mean to say that [] and (:) }}{ }$ are the constructor functions for lists?

* No Junk: every list value is equal either to [], or else to a list of the form (x:xs) (ignoring non-termination, for now)
\geqslant No Confusion: if $x \neq y$, or $x s \neq y s$, then $x: X S \neq y: y s$
\diamond A pair of equations f []

$$
f(x: x s)=\ldots
$$

defines a unique function on list values

Algebraic Datatypes:

Algebraic Datatypes:

- Booleans and Lists are both examples of "algebraic datatypes":
* No Junk:
- Every Boolean value can be constructed using either False or True
- Every list can be described using (a combination of) [] and (:)
- No Confusion:
- True $=$ False
- [] $\neq(x: x s)$ and if ($x: x s)=(y: y s)$, then $x=y$ and $x s=y s$

In Haskell Notation:

data Bool = False | True introduces:

- A type, Bool
- A constructor function, False :: Bool
- A constructor function, True :: Bool
data List $\mathrm{a}=$ Nil | Cons a (List a) introduces
- A type, List t , for each type t
- A constructor function, Nil :: List a
- A constructor function, Cons :: a -> List a -> List a

More Enumerations:

data Rainbow = Red | Orange | Yellow | Green | Blue | Indigo | Violet
introduces:

- A type, Rainbow
- A constructor function, Red :: Rainbow
- A constructor function, Violet :: Rainbow

No Junk: Every value of type Rainbow is one of the above seven colors
No Confusion: The seven colors above are distinct values of type Rainbow

More Recursive Types:

data Shape = Circle Radius
Polygon [Point]
| Transform Transform Shape
data Transform
$=$ Translate Point
| Rotate Angle
| Compose Transform Transform
introduces:

- Two types, Shape and Transform
- Circle :: Radius -> Shape
- Polygon :: [Point] -> Shape
- Transform :: Transform -> Shape -> Shape

■ ...

More Parameterized Types:

data Maybe $\mathrm{a}=$ Nothing | Just a
introduces:

- A type, Maybe t, for each type t
- A constructor function, Nothing :: Maybe a
- A constructor function, Just :: a -> Maybe a
data Pair $a b=$ Pair $a b$
introduces
- A type, Pair t s, for any types t and s
- A constructor function Pair :: a -> b -> Pair a b

General Form:

Algebraic datatypes are introduced by top-level definitions of the form:

$$
\text { data } T a_{1} \ldots a_{n}=c_{1}|\ldots| c_{m}
$$

where:

- T is the type name (must start with a capital letter)
- a_{1}, \ldots, a_{n} are (distinct) (type) arguments/parameters/ variables (must start with lower case letter) ($n \geq 0$)
- Each of the c_{i} is an expression $F_{i} t_{1} \ldots t_{k}$ where:
- $\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{k}}$ are type expressions that (optionally) mention the arguments a_{1}, \ldots, a_{n}
- F_{i} is a new constructor function $F_{i}:: t_{1}->\ldots->t_{p}->T a_{1} \ldots a_{n}$
- The arity of $\mathrm{F}_{\mathrm{i}}, \mathrm{k} \geq 0$

Quite a lot for a single definition!

No Junk and Confusion:

* The key properties that are shared by all algebraic datatypes:
- No Junk: Every value of type $T a_{1} \ldots a_{n}$ can be written in the form $F_{i} e_{1} \ldots e_{k}$ for some choice of constructor F_{i} and (appropriately typed) arguments $\mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{k}}$
- No Confusion: Distinct constructors or distinct arguments produce distinct results
* These are fundamental assumptions that we make when we write and/or reason about functional programs.

Pattern Matching:

- In addition to introducing a new type and a collection of constructor functions, each data definition also adds the ability to pattern match over values of the new type
- For example, given
data Maybe a = Nothing | Just a
then we can define functions like the following:

$$
\begin{aligned}
& \text { orElse } \quad \text { :: Maybe } a->a->a \\
& \text { Just } x \text { `orElse` } y=x \\
& \text { Nothing `orElse` } y=y
\end{aligned}
$$

Pattern Matching \& Substitution:

- The result of a pattern match is either:
- A failure
- A success, accompanied by a substitution that provides a value for each of the values in the pattern

Examples:

- [] does not match the pattern (x:xs)
- [1,2,3] matches the pattern (x:xs) with $\mathrm{x}=1$ and $\mathrm{xs}=[2,3]$

Patterns:

More formally, a pattern is either:

* An identifier
- Matches any value, binds result to the identifier
- An underscore (a "wildcard")
- Matches any value, discards the result
- A constructed pattern of the form $C p_{1} \ldots p_{n}$ where C is a constructor of arity n and $\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}}$ are patterns of the appropriate type
- Matches any value of the form $\mathrm{Ce}_{1} \ldots \mathrm{e}_{\mathrm{n}}$, provided that each of the e_{i} values matches the corresponding p_{i} pattern.

Other Pattern Forms:

For completeness:

* "Sugared" constructor patterns:
- Tuple patterns (p_{1}, p_{2})
- List patterns $\left[p_{1}, p_{2}, p_{3}\right]$
- Strings, for example: "hi" = ('h' : 'i' : [])

Labeled patterns
Numeric Literals:

- Can be considered as constructor patterns, but the implementation uses equality (==) to test for matches
* "as" patterns, id@pat
- Lazy patterns, ~pat
* ($\mathrm{n}+\mathrm{k}$) patterns

Function Definitions:

$*$ In general, a function definition is written as a list of adjacent equations of the form:

$$
f p_{1} \ldots p_{n}=r h s
$$

where:

- f is the name of the function that is being defined
- $\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}}$ are patterns, and rhs is an expression
- All equations in the definition of f must have the same number of arguments (the "arity" of f)

continued:

- Given a function definition with m equations:

$$
\begin{aligned}
& f p_{1,1} \ldots p_{n, 1}=r s_{1} \\
& f_{1,2} \ldots p_{n, 2}=r \mathrm{phs}_{2}
\end{aligned}
$$

$$
f p_{1, m} \ldots p_{n, m}=r h s_{m}
$$

The value of $f e_{1} \ldots e_{n}$ is S rhs ${ }_{i}$, where i is the smallest integer such that the expressions e_{j} match the patterns $\mathrm{p}_{\mathrm{j}, \mathrm{i}}$ and S is the corresponding substitution.

Guards, Guards!

* A function definition may also include guards (Boolean expressions):

$$
f p_{1} \ldots p_{n} \left\lvert\, \begin{aligned}
& g_{1}=\text { rhs }_{1} \\
& \mathrm{~g}_{2}=\mathrm{rhs}_{2} \\
& \mathrm{~g}_{3}=\mathrm{rhs}_{3}
\end{aligned}\right.
$$

- An expression $f e_{1} \ldots e_{n}$ will only match an equation like this if all of the e_{i} match the corresponding p_{i} and, in addition, at least one of the guards g_{j} is True
- In that case, the value is $\mathrm{Srhs}_{\mathrm{j}}$, where j is the smallest index such that g_{j} is True
* (The prelude defines otherwise = True :: Bool for use in guards.)

Where Clauses:

- A function definition may also a where clause:

$$
f p_{1} \ldots p_{n}=\mathrm{rhs}
$$

where decls
Behaves like a let expression:

$$
f p_{1} \ldots p_{n}=\text { let decls in rhs }
$$

Except that where clauses can scope across guards:

$$
\begin{array}{ll}
\mathrm{ft}_{1} \ldots \mathrm{p}_{\mathrm{n}} \quad \left\lvert\, \begin{array}{l}
\mathrm{g}_{1}=\mathrm{rhs}_{1} \\
\mathrm{~g}_{2}=\mathrm{rhs}_{2} \\
\mathrm{~g}_{3}=\mathrm{rhs}_{3} \\
\text { where decls }
\end{array}\right.
\end{array}
$$

* Variables bound here in decls can be used in any of the g_{i} or rhs i_{i}

Example: filter

filter
filter p []
filter p (x:xs)
| $\mathrm{px} \quad=\mathrm{x}$: rest
| otherwise = rest
where rest $=$ filter p xs

Example: Binary Search Trees

```
data Tree = Leaf | Fork Tree Int Tree
insert :: Int -> Tree -> Tree
insert n Leaf = Fork Leaf n Leaf
insert n (Fork I m r)
    | n <= m = Fork (insert n I) m r
    | otherwise = Fork Im (insert n r)
lookup :: Int -> Tree -> Bool
lookup n Leaf = False
lookup n (Fork I m r)
    | n<m = lookup n |
    | n>m = lookup n r
    | otherwise = True
```


Case Expressions:

* Case expressions can be used for pattern matching:

case e of

$$
\begin{aligned}
& p_{1}->e_{1} \\
& p_{2}->e_{2} \\
& \ldots \\
& p_{n}->e_{n}
\end{aligned}
$$

- Equivalent to:
let $f p_{1}=e_{1}$
$f p_{2}=e_{2}$
$\dddot{f}^{f} p_{n}=e_{n}$
in $f e$

continued:

Guards and where clauses can also be used in case expressions:
filter p xs = case xs of

$$
\begin{aligned}
& \text { [] } \\
& \text {-> [] } \\
& \text { (x:xs) | } \mathrm{px} \\
& \text {-> x:ys } \\
& \text { | otherwise -> ys } \\
& \text { where ys = filter p xs }
\end{aligned}
$$

If Expressions:

- If expressions can be used to test Boolean values:
if e then e_{1} else e_{2}
Equivalent to:

case e of

True -> e_{1}
False -> e_{2}

Summary:

- Algebraic datatypes can support:
- Enumeration types
- Parameterized types
- Recursive types
- Products (composite/aggregate values); and
- Sums (alternatives)
- Type constructors, Constructor functions, Pattern matching
- Unifying features: No junk, no confusion!

Example: transpose

transpose
transpose []
transpose ([] : xss) = transpose xss
transpose ((x:xs) : xss)
$=(x:[h \mid(h: t)<-x s s])$
: transpose (xs : [t \| (h:t) <- xss])

Example:
transpose $[[1,2,3],[4,5,6]]=[[1,4],[2,5],[3,6]]$

Example: say

Say> putStr (say "hello")

H	H	EEEEE	L	L	OOO
H	H	E	L	L	O
HHHHH	EEEEE	L	L	O	O
H	H	E	L	L	O
H	H	EEEEE	LLLLL	LLLLL	OOO

Say>

... continued:

$$
\begin{aligned}
& \text { say }=\left(\prime \backslash n^{\prime}:\right) \\
& \text { - unlines } \\
& \text { • map (foldrl (\xs ys->xs++" "++ys)) } \\
& \text { - transpose } \\
& \text { - map picChar } \\
& \text { picChar 'A' }=\text { [" A ", } \\
& \text { " A A ", } \\
& \text { "AAAAA", } \\
& \text { "A A", } \\
& \text { "A A"] } \\
& \text { etc... }
\end{aligned}
$$

Composition and Reuse:

```
say> (putStr . concat . map say . lines . say) "A"
```

A	
A A	
AAAAA	
A	A
A	A

A	A	
A A	A A	
AAAAA	AAAAA	
A	A	
A	A	

A		A		A		A	
A							
A A	A A	A A	A A		A A		
AAAAA	AAAAA	AAAAA	AAAAA	AAAAA			
A	A	A	A	A	A	A	A
A A	A						
A	A	A	A	A	A	A	A
A	A						

A	A
A A	A A
AAAAA	AAAAA
A A	A A
A A	A A
A	A
A A	A A
AAAAA	AAAAA
A A	A A
A A	A A

