CS 457/557: Functional Languages

Leveraging Laziness

Mark P Jones
Portland State University

Lazy Evaluation:

With a lazy evaluation strategy:

- Don't evaluate until you have to
- When you do evaluate, save the result so that you can use it again next time ...

Why use lazy evaluation?

- Avoids redundant computation
- Eliminates special cases (e.g., \&\& and ||)
- Facilitates reasoning

Lazy evaluation encourages:

- Programming in a compositional style
- Working with "infinite data structures"
- Computing with "circular programs"

Compositional Style:

Separate aspects of program behavior separated into independent components
fact n
$=$ product [1..n]
sumSqrs $n=\operatorname{sum}\left(\operatorname{map}\left(\mid x->x^{*} x\right)[1 . . n]\right)$
minimum = head. sort

"Infinite" Data Structures:

Data structures are evaluated lazily, so we can specify "infinite" data structures in which only the parts that are actually needed are evaluated:
powersOfTwo = iterate (2*) 1
twoPow $\mathrm{n}=$ powersOfTwo !! n
fibs $\quad 0: 1$: zipWith (+) fibs (tail fibs)
fib $n=$ fibs !! n

Circular Programs:

An example due to Richard Bird ("Using circular programs to eliminate multiple traversals of data"):

Consider a tree datatype: data Tree $=$ Leaf | Fork Int Tree Tree

Define a function
repMin :: Tree -> Tree
that will produce an output tree with the same shape as the input but replacing each integer with the minimum value in the original tree.

Example:

Same shape, values replaced with minimum

Example:

Obvious implementation: repMin $t=\operatorname{mapTree}(\backslash n->m) t$ where $m=$ minTree t

Example:

Can we do this with only one traversal?

A Slightly Easier Problem:

In a single traversal:

- Calculate the minimum value in the tree
- Replace each entry with some given n

A Single Traversal:

We can code this algorithm fairly easily:
repMin' :: Int -> Tree -> (Int, Tree)
repMin' n Leaf $=($ maxInt, Leaf $)$
repMin' n (Fork m I r)

$$
\begin{aligned}
= & \left(\min \mathrm{nl} \mathrm{nr}, \text { Fork } \mathrm{n} \mathrm{l}^{\prime} \mathrm{r}^{\prime}\right) \\
& \text { where }
\end{aligned}
$$

$$
\begin{aligned}
& \left(n l, l^{\prime}\right)=\text { repMin' } n l \\
& \left(n r, r^{\prime}\right)=\text { repMin' } n ~ r
\end{aligned}
$$

"Tying the knot"

- Now a call repMin' m t will produce a pair (n, t ') where
- n is the minimum value of all the integers in t
- t^{\prime} is a tree with the same shape as t but with each integer replaced by m.
- We can implement repMin by creating a cyclic structure that passes the minimum value that is returned by repMin' as its first argument:
 a more realistic example

Mark is Fussy about Layout:

Have you noticed how I get fussy about code like:

```
map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs)=f x : map f xs
    filter :: (a -> Bool) -> [a] -> [a]
    filter p [] = []
    filter P (x:xs)
    | P x = x : filter p xs
    | otherwise = filter p xs
```


Mark is Fussy about Layout:

... and try to line up the separators like this:

Can we do this Automatically?

```
map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs
filter :: (a -> Bool) -> [a] -> [a]
filter p [] = []
filter p (x:xs)
    | p x = x : filter p xs
    | otherwise = filter p xs
```


Thinking about an Algorithm:

Let's look at this line by line:

6	map : : $(\mathrm{a}->\mathrm{b})$	-> [a] ->
10	$\operatorname{map} \mathrm{f}$ [] $=$ []	
14	$\operatorname{map} \mathrm{f}(\mathrm{x}: \mathrm{xs})=$	$\mathrm{f} x: \operatorname{map} \mathrm{f} x \mathrm{~s}$

Maximum Total \# chars up to and including first separator

Thinking about an Algorithm:

Let's look at this line by line:

10	6	map : : (a -> b) -> [a] -> [b]
6	10	$\operatorname{map} \mathrm{f}$ [] $=$ []
2	14	map $f(x: x s)=\mathrm{f} x: \operatorname{map} \mathrm{f} \mathrm{xs}$
0		
7	9	filter : : (a -> Bool) -> [a] -> [a]
3	13	filter p [] = []
0		filter p (x:xs)
6	10	\| $\mathrm{p} x=\mathrm{x}$: filter p xs
0	16	\| otherwise $=$ filter p xs

\# extra chars to insert before first separator

Some Preliminaries:

separators
separators
pad
pad n s

: : [String]

= ["=", ": :"]
: : Int -> String -> String
$=$ take n (s ++ repeat ' ')

Patching Lines:

Tying the Knot (again):

```
main :: IO ()
main = getEnv "TM_SELECTED_TEXT"
    >>= (putStr . align)
align :: String -> String
align s = unlines (map snd ps)
    where w = foldr max 0 (map fst ps)
        ps = map (patchLine w) (lines s)
```


An Editor Plugin:

Combining
 Techniques of Lazy Programming

"Escape! That's the goal.

Rush Hour is a premier sliding block puzzle designed to challenge your sequentialthinking skills (and perhaps your traffic-officer aspirations as well)."

8infRy PRTN

Dinpods fins

BIIARPY ARTS"

BIInRPY RRIS*

BInRPY ARIST

BIInPYY PRTS"

BIInRPY RRTS"

BIInRPY PRTSE

BIINRPY PRIS'

A Rush Hour Solver:

Uses lazy evaluation in three important ways:

- Written in compositional style
- Natural use of an infinite data structure (a search tree that is subsequently pruned to a finite tree that eliminates duplicate puzzle positions)
- Cyclic programming techniques used to implement breadth-first pruning of the search tree.

Representing the Board:

type Position $=$ (Coord, Coord) type Coord $=$ Int

$\operatorname{maxw}, \operatorname{maxh}$	$::$ Coord
maxw	$=6$
maxh	$=6$

Representing the Pieces:

```
type Vehicle = (Color, Type)
data Color = Red | ... | Emerald
                                deriving (Eq, Show)
data Type= = Car | Truck 
len
    :: Type -> Int
len Car = 2
len Truck = 3
```


Representing Puzzles:

```
type Puzzle
type Piece
data Orientation = W | H
vehicle
vehicle (v, p, o) = v
solved
solved p
= [Piece]
= (Vehicle, Position, Orientation)
    :: Piece -> Vehicle
:: Piece -> Bool
    = p == ((Red, Car), (4,3), W)
```


RUSMJOUj

URAFFIG JAM PUZZLE


```
puzzle1 :: Puzzle
puzzle1 =
```

[((LtGreen, Car), $(0,5), W)$, ((Yellow, Truck), $(5,3), H)$, ((Violet, Truck), $(0,2), H)$, ((Blue, Truck), $(3,2), H)$, ((Red, Car), $(1,3), W)$, ((Orange, Car), $(0,0), H)$, ((LtBlue, Car), $(4,1), W)$, ((Emerald, Truck), (2,0), W)]

From Moves to Trees:

Checking for Obstructions:

```
puzzleObstructs :: Puzzle -> Position -> Bool
puzzleObstructs puzzle pos
    = or [ pieceObstructs p pos | p<-puzzle ]
pieceObstructs :: Piece -> Position -> Bool
pieceObstructs ((c,t), (x,y), W) (u,v)
    = (y==v) && (x<=u) && (u<x+len t)
pieceObstructs ((c,t), (x,y), H) (u,v)
    = (x==u) && (y<=v) && (v<y+len t)
```


Calculating Moves:

```
moves
    :: Puzzle -> Piece -> [Piece]
moves puzzle piece = step back piece ++ step forw piece
where
    back
    :: Piece -> Maybe Piece
    back (v, (x,y), W)
        | x>0 && free p = Just (v, P, W)
        where }P=(x-1,y
    free
    = not. puzzleObstructs puzzle
    step
    :: (a -> Maybe a) -> a -> [a]
    = case dir p of
        Nothing -> []
        Just p' -> p': step dir p'
```


Forests and Trees:

```
type Forest a = [Tree a]
data Tree a = Node a [Tree a]
mapTree :: (a -> b) -> Tree a -> Tree b
mapTree f (Node x CS)
    = Node (f x) (map (mapTree f) CS)
pathsTree :: Tree a -> Tree [a]
pathsTree = descend []
    where descend xs (Node x cs)
        = Node xs' (map (descend xs') cs)
        where xs' = x:xs
```


Making Trees:

= [("", 'd', "og") ("d",'o',"g"), ("do",'g',"")])

Pruning the Tree:

- We want to avoid puzzle solutions in which the same piece is moved in two successive turns
- The generated tree may contain many instances of this pattern
- We can prune away repetition using:

```
trimRel :: (a -> a -> Bool) -> Tree a -> Tree a
trimRel rel (Node x cs)
    = Node x (filter (\(Node y _) -> rel x y) cs)
```


Eliminating Duplicate Puzzles:

- We don't want to explore any single puzzle configuration more than once
- We want to find shortest possible solutions (requires breadth-first search of the forest)


```
trimDups :: Eq b => (a -> b) -> Forest a -> Forest a
trimDups val f = f'
where
    (f', xss)= prune f ([]:xss) knot tying
    prune [] xss = ([], xss)
    prune (Node v cs : ts) xss
    = let }\textrm{x}=\textrm{val}\textrm{v}\mathrm{ in
    if x `elem` head xss
    then prune ts xss
    else let (cs', xssl) = prune cs (tail xss)
        (ts', xss2)
                        = prune ts ((x:head xss):xssl)
        in (Node v cs' : ts', xss2)
```


Breadth-First Search:

```
bfs :: Tree t -> [t]
bfs = concat . bft
bft (Node x cs) = [x] : bff cs
bff = foldr (combine (++)) [] . map bft
combine :: (a -> a -> a) -> [a] -> [a] -> [a]
combine f (x:xs) (y:ys) = f x y : combine f xs ys
combine f [] ys = ys
combine f xs [] = xs
```


The Main Solver:

```
solve :: Puzzle -> IO ()
solve = putStrLn
    . unlines
    . map show
    . reverse
    . head
    . filter (solved . head)
    . concat
    . bff
    . map (pathsTree . mapTree fst)
    . trimDups (\(p,ps) -> ps)
    . map (trimRel (\(v,ps) (w,qs) -> vehicle v /= vehicle w))
    . forest
```


Summary:

- Laziness provides new ways (with respect to other paradigms) for us to think about and express algorithms
- Enhanced modularity from compositional style, infinite data structures, etc...
- Novel programming techniques like knot tying/circular programs
- Further Reading:
- Why Functional Programming Matters, John Hughes
- The Semantic Elegance of Applicative Languages, D. A. Turner
- Using Circular Programs to Eliminate Multiple Traversals of Data Structures, Richard Bird

