
1

CS 457/557: Functional
Languages

I/O Actions in Haskell

Mark P Jones
Portland State University

2

Question:

If functional programs don’t
have any side-effects, then

how can we ever do anything
useful?

3

I/O: A quick overview

Computing by calculating:
  1 + 3

   take 32 (iterate (2*) 1)

  color red (translate (1,2) (circle 3))

   (leftTree `beside` rightTree)

  getChar >>= putChar

4

Demo:

… of Mac OS X Automator …

!!!

???

IO Actions:

  An IO action is a value of type IO T
  T is the type of values that it produces

5

:: IO a action

IO Actions:

If action :: IO a and function :: a -> IO b
then action >>= function :: IO b

6

:: IO a

:: a -> IO b

action

function

The New Haskell Logo:

7

Building Blocks:

(>>) :: IO a -> IO b -> IO b

p >> q is an I/O action in which the
output of p is ignored by q

 p >> q == p >>= \x -> q
 (where x does not appear in q)

8

Building Blocks:

return :: a -> IO a

An I/O action that returns its input with
no actual I/O behavior

9

Building Blocks:

inIO :: (a -> b) -> a -> IO b

An action inIO f applies the function f to
each input of type a and produces
outputs of type b as its results

10

Building Blocks:

mapM :: (a -> IO b)

 -> [a] -> IO [b]

An action mapM f takes a list of inputs of
type [a] as its input, runs the action f on
each element in turn, and produces a list
of outputs of type [b]

11

Building Blocks:

mapM_ :: (a -> IO b)

 -> [a] -> IO()

An action mapM_ f takes a list of inputs
of type [a] as its input, runs the action f
on each element in turn, and produces a
result of type () as output

12

Terminal Output:

putStr :: String -> IO ()

putStrLn :: String -> IO ()

An action putStr s takes a String input
and outputs it on the terminal producing
a result of type ()

putStrLn s does the same thing but adds
a trailing new line

13

Terminal Output:

print :: Show a => a -> IO ()

A print action takes a value whose type
is in Show and outputs a corresponding
String on the terminal

14

15

Special Treatment of IO:
   The main function in every Haskell program is expected to

have type IO ()

   If you write an expression of type IO t at the Hugs
prompt, it will be evaluated as a program and the result
discarded

   If you write an expression of some other type at the Hugs
prompt, it will be turned in to an IO program using:

 print :: (Show a) => a -> IO ()
 print = putStrLn . show

   If you write an expression e of type IO t at the GHCi
prompt, it will treat it as e >>= print

Web Actions:

The WebActions module provides the
following I/O actions:
getText :: URL -> IO String

getByteString :: URL -> IO ByteString

writeByteString :: String -> ByteString -> IO ()

downloadTo :: FilePath -> URL -> IO ()

getTags :: URL -> IO [Tag]

getHrefs :: URL -> IO [URL]

getHTML :: URL -> IO [TagTree]

getXML :: URL -> IO [Content]

16

Viewing a Webpage:
return url

 >>= getText

 >>= putStr

17

Counting Characters:
return url

 >>= getText

 >>= inIO length

 >>= print

18

Counting Lines:
return url

 >>= getText

 >>= inIO (length . lines)

 >>= print

19

Viewing a Webpage as Tags:
return url

 >>= getTags

 >>= inIO (unlines . map show)

 >>= putStr

20

Extracting Hyper-references:
getHrefs :: URL -> IO [URL]

getHrefs url

 = getTags url >>= \ts ->

 return [link |

 (TagOpen "a" attrs) <- ts,

 ("href", link) <- attrs]

21

Downloading From a Webpage:
return url

 >>= getHrefs

 >>= inIO (filter (isSuffixOf "hs"))

 >>= mapM_ (downloadTo "source")

22

Implementing downloadTo:
downloadTo :: FilePath -> URL -> IO ()

downloadTo dir url

 = getByteString url

 >>= writeByteString (dir </> urlName url)

urlName :: String -> String

urlName = reverse

 . takeWhile ('/'/=)

 . reverse

23

Visualizing a Webpage:
return url

 >>= getTags

 >>= inIO tagTree

 >>= inIO (listToDot "root")

 >>= writeFile "tree.dot"

24

25

IOActions Primitives:
putChar :: Char -> IO ()
putStr :: String -> IO ()

putStrLn :: String -> IO ()

print :: Show a => a -> IO ()

getChar :: IO Char

getLine :: IO String

getContents :: IO String

readFile :: String -> IO String

writeFile :: String -> IO ()

26

… continued:
getDirectoryContents :: FilePath -> IO [FilePath]

getDirectoryPaths :: FilePath -> IO [FilePath]

getCurrentDirectory :: IO FilePath
getHomeDirectory :: IO FilePath

doesFileExist :: FilePath -> IO Bool

doesDirectoryExist :: FilePath -> IO Bool
createDirectory :: FilePath -> IO ()

getFiles :: FilePath -> IO [FilePath]

getDirectories :: FilePath -> IO [FilePath]
getArgs :: IO [String]

getProgName :: IO String

getEnv :: String -> IO String
runCommand :: String -> FilePath -> IO ExitCode

Exercises:

  Load up IOActions.hs, and write IO
Actions to answer the following:
  How many Haskell source files are there in

the current directory?
  How many lines of Haskell source code are

in the current directory?
  What is the largest Haskell source file in

the current directory
  Copy the largest Haskell source file in the

current directory into Largest.hs
27

Visualizing a File System:
data FileSystem = File FilePath

 | Folder FilePath [FileSystem]

 | Foldep FilePath

 deriving Show

instance Tree FileSystem where …

Instance LabeledTree FileSystem where …

28

… continued:
getFileSystemDir :: Int -> FilePath -> FilePath -> IO FileSystem

getFileSystemDir n path name

 | n < 1 = return (Foldep name)

 | otherwise = getDirectoryContents path

 >>= inIO (filter (not . dotFile))

 >>= mapM (getFileSystemIn (n-1) path)

 >>= inIO (Folder name)

getFileSystemIn :: Int -> FilePath -> FilePath -> IO FileSystem

getFileSystemIn n parent child

 = doesDirectoryExist path

 >>= \b-> case b of

 True -> getFileSystemDir n path child

 False -> return (File child)

 where path = parent </> child

29

Visualizing a FileSystem:
return "haskore-vintage-0.1"

 >>= getFileSystem 4

 >>= inIO toDot

 >>= writeFile "tree.dot”

30

Alternative Notation:

  The pipelined style for writing IO
Actions isn’t always so convenient:
  Need to refer to an input at multiple

stages of a pipeline?
  Non-linear flow (error handling)?
  Recursion? Loops?
  Shorter lines?

31

32

“do-notation”:
   Syntactic sugar for writing IO actions:

 do p1
 p2
 …
 pn

 is equivalent to:
 p1 >> p2 >> … >> pn

 and can also be written:
 do p1; p2; …; pn or do { p1; p2; …; pn }

33

Extending “do-notation”:
We can bind the results produced by IO actions
variables using an extended form of do-notation.
For example:

 do x1 <- p1
 …

 xn <- pn

 q

is equivalent to:
 p1 >>= \x1 ->
 …
 pn >>= \xn ->
 q

last item must be
an expression

all “generators” should have
the same indentation

variables introduced in a
generator are in scope for
the rest of the expression

The “v <-” portion of a
generator is optional and

defaults to “_ <-” if

34

Defining mapM and mapM_:
mapM_ :: (a -> IO b) -> [a] -> IO ()

mapM_ f [] = return ()

mapM_ f (x:xs) = f x
 >> mapM_ f xs

mapM :: (a->IO b) -> [a]->IO [b]
mapM f [] = return []

mapM f (x:xs) = f x >>= \y ->

 mapM f xs >>= \ys->
 return (y:ys)

35

Defining mapM and mapM_:
mapM_ :: (a -> IO b) -> [a] -> IO ()

mapM_ f [] = return ()

mapM_ f (x:xs) = do f x
 mapM_ f xs

mapM :: (a->IO b) -> [a]->IO [b]
mapM f [] = return []

mapM f (x:xs) = do y <- f x
 ys <- mapM f xs
 return (y:ys)

36

More examples: getChar

  A simple primitive for reading a single
character:
 getChar :: IO Char

  A simple example:
 echo :: IO a
 echo = do c <- getChar

 putChar c
 echo

37

Reading a Complete Line:

getLine :: IO String
getLine = do c <- getChar

 if c=='\n'
 then return ""
 else do cs <- getLine
 return (c:cs)

38

Alternative:
getLine :: IO String
getLine = loop []

loop :: String -> IO String
loop cs = do c <- getChar

 case c of
 '\n' -> return (reverse cs)
 '\b' -> case cs of
 [] -> loop cs
 (c:cs) -> loop cs
 c -> loop (c:cs)

39

There is No Escape!

  There are plenty of ways to construct
expressions of type IO t

  Once a program is “tainted” with IO,
there is no way to “shake it off”

  For example, there is no primitive of
type IO t -> t that runs a program
and returns its result

40

The Real Primitives:
   Many of the I/O functions that we’ve

introduced can be defined in terms of other
I/O functions

   The fundamental primitives are:
return :: a -> IO a
(>>=) :: IO a -> (a -> IO b) -> IO b

putChar :: Char -> IO ()
getChar :: IO Char
…

41

Generalizing …

  We can define versions of return and
(>>=) for other types:

return :: a -> List a
return x = [x]

(>>=) :: List a -> (a -> List b) -> List b
xs >>= f = [y | x <- xs, y <- f x]

   I can feel a type class coming on …

42

Further Reading:

   “Tackling the Awkward Squad:
monadic input/output, concurrency,
exceptions, and foreign-language calls
in Haskell” Simon Peyton Jones, 2005

   “Imperative Functional Programming”
Simon Peyton Jones and Philip Wadler,
POPL 1993

