
Cse536 Functional Programming

11/13/2010

Compositional Functional Programming
with the Haskore Music

•Todays Topics
– The Haskore System

–The Music datatype

–MIDI Instruments

–Pitch & absolute Pitch

–Composing Music

» Delay

» Repeating

» Transposing

–Manipulating Music

» Duration

» Cutting

» Reversing

–Percussion

–Presentation and the MIDI file format

Cse536 Functional Programming

21/13/2010

Haskore
• Haskore is a Haskell library for constructing digital

music
– It supports an abstract high-level description of musical concepts

– Maps into the Midi (Musical Instrument Digital Interface) standard

» a low-level binary bit based encoding of music

» can be “played” by “Media-Players”

Haskore

Haskell

Haskore

Abstract

High Level

Implementation

independent MIDI

low level

bit based

implementation

standard

presentation

Cse536 Functional Programming

31/13/2010

Musical Basics in Haskore

type Pitch = (PitchClass, Octave)

data PitchClass =

Cf | C | Cs | Df | D | Ds | Ef | E

| Es | Ff | F | Fs | Gf | G | Gs | Af

| A | As | Bf | B | Bs

deriving (Eq,Show)

type Octave = Int
Middle C

Octave 2 Octave 3 Octave 4

C D E F G A B C

Cs Ds Fs Gs As

Df Ef Gf Af Bf

Cf Ff Es Cf Bs

Cse536 Functional Programming

41/13/2010

Music

data Music = Note Pitch Dur

| Rest Dur

| Music :+: Music

| Music :=: Music

| Tempo

(Ratio Int) Music

| Trans

Int Music

| Instr IName Music

Cse536 Functional Programming

51/13/2010

Midi Standard supports lots of instruments

data IName

= AcousticGrandPiano | BrightAcousticPiano | ElectricGrandPiano | HonkyTonkPiano |
RhodesPiano | ChorusedPiano | Harpsichord | Clavinet
| Celesta | Glockenspiel | MusicBox | Vibraphone
| Marimba | Xylophone | TubularBells | Dulcimer
| HammondOrgan | PercussiveOrgan | RockOrgan | ChurchOrgan
| ReedOrgan | Accordion | Harmonica | TangoAccordion |
AcousticGuitarNylon | AcousticGuitarSteel | ElectricGuitarJazz | ElectricGuitarClean
| ElectricGuitarMuted | OverdrivenGuitar | DistortionGuitar | GuitarHarmonics
| AcousticBass | ElectricBassFingered | ElectricBassPicked | FretlessBass |
SlapBass1 | SlapBass2 | SynthBass1 | SynthBass2 | Violin
| Viola | Cello | Contrabass | TremoloStrings |
PizzicatoStrings | OrchestralHarp | Timpani | StringEnsemble1 |
StringEnsemble2 | SynthStrings1 | SynthStrings2 | ChoirAahs |
VoiceOohs | SynthVoice | OrchestraHit | Trumpet |
Trombone | Tuba | MutedTrumpet | FrenchHorn | BrassSection
| SynthBrass1 | SynthBrass2 | SopranoSax | AltoSax |
TenorSax | BaritoneSax | Oboe | Bassoon | EnglishHorn |
Clarinet | Piccolo | Flute | Recorder | PanFlute |
BlownBottle | Shakuhachi | Whistle | Ocarina |
Lead1Square | Lead2Sawtooth | Lead3Calliope | Lead4Chiff |
Lead5Charang | Lead6Voice | Lead7Fifths | Lead8BassLead |
Pad1NewAge | Pad2Warm | Pad3Polysynth | Pad4Choir |
Pad5Bowed | Pad6Metallic | Pad7Halo | Pad8Sweep | FX1Train
| FX2Soundtrack | FX3Crystal | FX4Atmosphere | FX5Brightness |
FX6Goblins | FX7Echoes | FX8SciFi | Sitar | Banjo
| Shamisen | Koto | Kalimba | Bagpipe | Fiddle
| Shanai | TinkleBell | Agogo | SteelDrums | Woodblock
| TaikoDrum | MelodicDrum | SynthDrum | ReverseCymbal |
GuitarFretNoise | BreathNoise | Seashore | BirdTweet |
TelephoneRing | Helicopter | Applause | Gunshot | Percussion

deriving (Show,Eq,Ord,Enum)

Cse536 Functional Programming

61/13/2010

type Dur = Ratio Int

– fractions of Integers such as 3 /4. We write (3 % 4) in Haskell.

type AbsPitch = Int

absPitch :: Pitch -> AbsPitch

absPitch (pc,oct) = 12*oct + pcToInt pc

Duration & Absolute Pitch

0 1 2 3 4 5 6 7 8 9 10 11 12 24 36 . . .

(C,0) (C,1) (C,2) (C,3)

Cse536 Functional Programming

71/13/2010

Pitch to integer
pcToInt :: PitchClass -> Int

pcToInt pc = case pc of

Cf -> -1 -- should Cf be 11?

C -> 0 ; Cs -> 1

Df -> 1 ; D -> 2 ; Ds -> 3

Ef -> 3 ; E -> 4 ; Es -> 5

Ff -> 4 ; F -> 5 ; Fs -> 6

Gf -> 6 ; G -> 7 ; Gs -> 8

Af -> 8 ; A -> 9 ; As -> 10

Bf -> 10 ; B -> 11 ; Bs -> 12 -- maybe 0?

Note how several different pitches have the same absolute pitch. This is
because the “flat” of some notes is the “sharp” of another.

C D E F G A B C

Cs Ds Fs Gs As

Df Ef Gf Af Bf

Cf Ff Es Cf Bs

Cse536 Functional Programming

81/13/2010

From AbsPitch to Pitch

pitch12 = [C,Cs,D,Ds,E,F,Fs,G,Gs,A,As,B]

pitch :: AbsPitch -> Pitch

pitch a = (pitch12 !! mod a 12, quot a 12)

trans :: Int -> Pitch -> Pitch

trans i p = pitch (absPitch p + i)

0 1 2 3 4 5 6 7 8 9 10 11 12 24 36 . . .

(C,0) (C,1) (C,2) (C,3)
octave

Dist above C

Cse536 Functional Programming

91/13/2010

Generic Music - Notes

cf,c,cs,df,d,ds,ef,e,es,ff,f,fs,gf,g,gs,af,a,as,bf,b,bs

:: Octave -> Dur -> Music

cf o = Note(Cf,o); c o = Note(C,o); cs o = Note(Cs,o)

df o = Note(Df,o); d o = Note(D,o); ds o = Note(Ds,o)

ef o = Note(Ef,o); e o = Note(E,o); es o = Note(Es,o)

ff o = Note(Ff,o); f o = Note(F,o); fs o = Note(Fs,o)

gf o = Note(Gf,o); g o = Note(G,o); gs o = Note(Gs,o)

af o = Note(Af,o); a o = Note(A,o); as o = Note(As,o)

bf o = Note(Bf,o); b o = Note(B,o); bs o = Note(Bs,o)

Given an Octave creates a function from Dur to Music in that octave.
Note that Note :: Pitch -> Dur -> Music

These functions have the same names as the constructors of the
PitchClass but they’re not capitalized.

Cse536 Functional Programming

101/13/2010

Generic Music - Rests
wn, hn, qn, en, sn, tn :: Dur

dhn, dqn, den, dsn :: Dur

wnr, hnr, qnr, enr, snr, tnr :: Music

dhnr, dqnr, denr, dsnr :: Music

wn = 1 ; wnr = Rest wn -- whole

hn = 1%2 ; hnr = Rest hn -- half

qn = 1%4 ; qnr = Rest qn -- quarter

en = 1%8 ; enr = Rest en -- eight

sn = 1%16 ; snr = Rest sn -- sixteenth

tn = 1%32 ; tnr = Rest tn -- thirty-second

dhn = 3%4 ; dhnr = Rest dhn -- dotted half

dqn = 3%8 ; dqnr = Rest dqn -- dotted quarter

den = 3%16 ; denr = Rest den -- dotted eighth

dsn = 3%32 ; dsnr = Rest dsn -- dotted sixteenth

Cse536 Functional Programming

111/13/2010

Lets Write Some Music!

line, chord :: [Music] -> Music

line = foldr (:+:) (Rest 0)

chord = foldr (:=:) (Rest 0)

• Example 1

cScale =

line [c 4 qn, d 4 qn, e 4 qn,

f 4 qn, g 4 qn, a 4 qn,

b 4 qn, c 5 qn]
Note the change

in Octave

performance.hs
performance.hs

Cse536 Functional Programming

121/13/2010

More Examples
cMaj = [n 4 hn | n <- [c,e,g]]

cMin = [n 4 wn | n <- [c,ef, g]]

• Example 2

cMajArp = line cMaj

• Example 3

cMajChd = chord cMaj

• Example 4

ex4 = line [chord cMaj, chord cMin]

Cse536 Functional Programming

131/13/2010

Time Delaying Music

delay :: Dur -> Music -> Music

delay d m = Rest d :+: m

ex5 = cScale :=: (delay dhn cScale)

Cse536 Functional Programming

141/13/2010

Transposing Music

ex6 = line [line cMaj,Trans 12 (line cMaj)]

12 tone

difference

Cse536 Functional Programming

151/13/2010

Repeating Music
repeatM :: Music -> Music

repeatM m = m :+: repeatM m

nBeatsRest n note =

line ((take n (repeat note)) ++ [qnr])

ex7 =

line [e 4 qn, d 4 qn, c 4 qn, d 4 qn,

line [nBeatsRest 3 (n 4 qn) | n <- [e,d]],

e 4 qn, nBeatsRest 2 (g 4 qn)]

Cse536 Functional Programming

161/13/2010

Fancy Stuff
pr1, pr2 :: Pitch -> Music

pr1 p = Tempo (5%6)

(Tempo (4%3) (mkLn 1 p qn :+:

Tempo (3%2) (mkLn 3 p en :+:

mkLn 2 p sn :+:

mkLn 1 p qn) :+:

mkLn 1 p qn) :+:

Tempo (3%2) (mkLn 6 p en))

pr2 p = Tempo (7%6)

(m1 :+:

Tempo (5%4) (mkLn 5 p en) :+:

m1 :+:

Tempo (3%2) m2)

where m1 = Tempo (5%4) (Tempo (3%2) m2 :+: m2)

m2 = mkLn 3 p en

mkLn n p d = line (take n (repeat (Note p d)))

pr12 :: Music

pr12 = pr1 (C,5) :=: pr2 (G,5)

Cse536 Functional Programming

171/13/2010

How long is a piece of music?

dur :: Music -> Dur

dur (Note _ d) = d

dur (Rest d) = d

dur (m1 :+: m2) = dur m1 + dur m2

dur (m1 :=: m2) = dur m1 `max` dur m2

dur (Tempo a m) = dur m / a

dur (Trans _ m) = dur m

dur (Instr _ m) = dur m

Cse536 Functional Programming

181/13/2010

Reversing a piece of music
revM :: Music -> Music

revM n@(Note _ _) = n

revM r@(Rest _) = r

revM (Tempo a m) = Tempo a (revM m)

revM (Trans i m) = Trans i (revM m)

revM (Instr i m) = Instr i (revM m)

revM (m1 :+: m2) = revM m2 :+: revM m1

revM (m1 :=: m2)

= let d1 = dur m1

d2 = dur m2

in if d1>d2

then revM m1 :=: (Rest (d1-d2) :+: revM m2)

else (Rest (d2-d1) :+: revM m1) :=: revM m2

Cse536 Functional Programming

191/13/2010

Cutting a piece of music short

cut :: Dur -> Music -> Music

cut d m | d <= 0 = Rest 0

cut d (Note x d0) = Note x (min d0 d)

cut d (Rest d0) = Rest (min d0 d)

cut d (m1 :=: m2) = cut d m1 :=: cut d m2

cut d (Tempo a m) = Tempo a (cut (d*a) m)

cut d (Trans a m) = Trans a (cut d m)

cut d (Instr a m) = Instr a (cut d m)

cut d (m1 :+: m2) =

let m1' = cut d m1

m2' = cut (d - dur m1') m2

in m1' :+: m2'

Cse536 Functional Programming

201/13/2010

Comments

• Music is a high level abstract representation
of music.

• Its analyzable so we can do many things with
it

– First, we can play it

– But we can also

» compute its duration (without playing it)

» reverse it

» scale it’s Tempo

» truncate it to a specific duration

» transpose it into another key

Cse536 Functional Programming

211/13/2010

Percussion

data PercussionSound

= AcousticBassDrum -- MIDI Key 35

| BassDrum1 -- MIDI Key 36

| SideStick -- ...

| AcousticSnare | HandClap | ElectricSnare | LowFloorTom

| ClosedHiHat | HighFloorTom | PedalHiHat | LowTom

| OpenHiHat | LowMidTom | HiMidTom | CrashCymbal1

| HighTom | RideCymbal1 | ChineseCymbal | RideBell

| Tambourine | SplashCymbal | Cowbell | CrashCymbal2

| Vibraslap | RideCymbal2 | HiBongo | LowBongo

| MuteHiConga | OpenHiConga | LowConga | HighTimbale

| LowTimbale | HighAgogo | LowAgogo | Cabasa

| Maracas | ShortWhistle | LongWhistle | ShortGuiro

| LongGuiro | Claves | HiWoodBlock | LowWoodBlock

| MuteCuica | OpenCuica | MuteTriangle

| OpenTriangle -- MIDI Key 82

deriving (Show,Eq,Ord,Ix,Enum)

Cse536 Functional Programming

221/13/2010

Let’s beat the drums
perc :: PercussionSound -> Dur -> Music

perc ps = Note (pitch (fromEnum ps + 35))

funkGroove

= let p1 = perc LowTom qn

p2 = perc AcousticSnare en

in Tempo 3 (Instr Percussion (cut 8 (repeatM

((p1 :+: qnr :+: p2 :+: qnr :+: p2 :+:

p1 :+: p1 :+: qnr :+: p2 :+: enr)

:=: roll en (perc ClosedHiHat 2))

)))

Cse536 Functional Programming

231/13/2010

Music Presentation

• Music is a highlevel, abstract representation

• We call the playing of Music its Presentation

• Presentation requires “flattening” the Music
representation into a list of low level events.

– Events contain information about

» pitch

» start-time

» end-time

» loudness

» duration

» instrument etc.

• The MIDI standard is a file format to represent this
low level information.

• Presentation is the subject of the next lecture.

Cse536 Functional Programming

241/13/2010

MIDI Event List

Hours,

Minutes,

Seconds,

Frames

track

Time in 2 formats

channel

Measure,

Beats,

Ticks

Pitch, Volume, Duration

