$$
\begin{gathered}
\text { CS 457/557: Functional } \\
\text { Languages } \\
\text { Folds }
\end{gathered}
$$

Today's topics:

- Folds on lists have many uses
- Folds capture a common pattern of computation on list values
- In fact, there are similar notions of fold functions on many other algebraic datatypes ...)

Folds!

- A list xs can be built by applying the (:) and [] operators to a sequence of values:

$$
x s=x_{1}: x_{2}: x_{3}: x_{4}: \ldots: x_{k}:[]
$$

- Suppose that we are able to replace every use of (:) with a binary operator (\oplus), and the final [] with a value n :

$$
x s=x_{1} \oplus x_{2} \oplus x_{3} \oplus x_{4} \oplus \ldots \oplus x_{k} \oplus n
$$

- The resulting value is called fold $(\oplus) \mathrm{n} x$
- Many useful functions on lists can be described in this way.

Graphically:

Example: sum

sum = foldr (+) 0

Example: product

product = foldr (*) 1

Example: length

length $=$ foldr ($\backslash \mathrm{x}$ ys -> $1+\mathrm{ys}$) 0

Example: map

map $f=$ foldr (\x ys ->fx:ys) []

Example: filter

filter $p=$ foldr ($\backslash \mathrm{x}$ ys -> if $p \mathrm{x}$ then x :ys else ys) []

Formal Definition:

foldr
:: (a->b->b) ->b -> [a] ->b
foldr cons nil []
$=$ nil
foldr cons nil ($x: x s$) $=$ cons x (foldr cons nil x s)

Applications:

Patterns of Computation:

- foldr captures a common pattern of computations over lists
- As such, it's a very useful function in practice to include in the Prelude
- Even from a theoretical perspective, it's very useful because it makes a deep connection between functions that might otherwise seem very different ...
- From the perspective of lawful programming, one law about foldr can be used to reason about many other functions

A law about foldr:

- If (\oplus) is an associative operator with unit n, then foldr $(\oplus) \mathrm{n}$ xs \oplus foldr $(\oplus) \mathrm{n}$ ys
$=$ foldr $(\oplus) \mathrm{n}(\mathrm{xs}++\mathrm{ys})$
- $\left(x_{1} \oplus \ldots \oplus x_{k} \oplus n\right) \oplus\left(y_{1} \oplus \ldots \oplus y_{j} \oplus n\right)$

$$
\stackrel{\left(x_{1} \oplus \ldots \oplus x_{k} \oplus y_{1} \oplus \ldots \oplus y_{j} \oplus n\right)}{ }
$$

- All of the following laws are special cases:

$$
\begin{array}{lll}
\operatorname{sum} x s \quad+ & \text { sum } y s & =\operatorname{sum}(x s++y s) \\
\text { product } x s * & \text { product } y s= & \text { product }(x s++y s) \\
\text { concat xss }++ \text { concat yss }=\text { concat }(x s s++y s s) \\
\text { and } x s \quad \& \& \text { and } y s & =\text { and }(x s++y s) \\
\text { or } x s \quad ~ \| ~ o r ~ y s ~ & =\text { or }(x s++y s)
\end{array}
$$

foldl:

- There is a companion function to foldr called foldl:
fold
:: (b -> a -> b) -> b -> [a] -> b
foldl sn[]$=\mathrm{n}$
foldl sn(x:xs) = foldl s (s n x) xs
- For example:

$$
\text { foldl } \begin{aligned}
& s n\left[e_{1}, e_{2}, e_{3}\right] \\
& =s\left(s\left(s n e_{1}\right) e_{2}\right) e_{3} \\
= & \left(\left(n ` s^{`} e_{1}\right)^{`} s^{\prime} e_{2}\right){ }^{\prime} s^{`} e_{3}
\end{aligned}
$$

foldr vs foldl:

foldr

foldl

Uses for foldl:

- Many of the functions defined using foldr can be defined using foldl:

```
sum = foldl (+) 0
product = foldl (*) 1
```

- There are also some functions that are more easily defined using foldl:
reverse $=$ foldl (\ys x->x:ys) []
- When should you use foldr and when should you use foldl? When should you use explicit recursion instead? ... (to be continued)

foldr1 and foldl1:

- Variants of foldr and foldl that work on non-empty lists: foldr1 :: (a -> a -> a) -> [a] -> a
foldr1 $f[x] \quad=x$
foldr1 $\mathrm{f}(\mathrm{x}: \mathrm{xs}) \quad=\mathrm{fx}$ (foldr1 fxs)
foldl1
foldl1 $\mathrm{f}(\mathrm{x}: \mathrm{xs}) \quad=$ foldl fx xs
- Notice:
- No case for empty list
- No argument to replace empty list
- Less general type (only one type variable)

Uses of foldl1, foldr1:

From the prelude:

minimum $=$ foldl1 min maximum = foldl1 max

Not in the prelude:
commaSep = foldr1 (\s t -> s ++ ", " ++ t)

Example: Folds on Trees

foldTree :: t -> ($\mathrm{t}->$ Int -> t-> t) -> Tree -> t
foldTree leaf fork Leaf = leaf
foldTree leaf fork (Fork In r)
= fork (foldTree leaf fork I) n (foldTree leaf fork r)
sumTree :: Tree -> Int
sumTree $=$ foldTree $0(\backslash|n r->|+n+r)$
catTree :: Tree -> [Int]
catTree $=$ foldTree [] (\|n r->| ++ [n] ++ r)
treeSort :: [Int] -> [Int]
treeSort = catTree. foldr insert Leaf

