CS 457/557: Functional Languages

Equational Reasoning: Algebra of Programming

Mark P Jones
Portland State University

What Makes a Good Program?

- Performance?
* Code size?
- Maintainability?
* Above all else, correctness!
* But what does that mean? How can it be established?

Testing:

- Tests confirm expectations about the way things work
- If you drop a weight ...
... onto an egg ...
... Scrambled Egg!

Testing:

- Suppose it's our job to protect eggs from falling weights ...

We might design an EP
(Egg Protector ${ }^{\text {TM }}$) to accomplish this ...

- Then we test again ...
- Hooray! The egg is safe!
©

Generalizing from Tests:

* "The EP will protect an egg from a falling weight"
- Scrambled egg, and a crushed EP : $:$ How embarrassing ...
- It can be dangerous to generalize from the results of testing!

Refining the claim:

- Think back to our test:
* "The EP will protect an egg from a falling weight of at most 1 kg "
- This isn't such a general statement
- ... but it describes the EP's properties more accurately

More Tests:

* "The EP will protect an egg from a falling weight of at most $1 \mathrm{~kg}{ }^{\prime \prime}$
* Oops, another embarrassing oversight!

Refining the EP Design:

"The EP will protect an egg from a falling weight of at most $1 \mathrm{~kg}{ }^{\prime \prime}$

Refining the EP Design:

* "The EP 2.0 will protect an egg from a falling weight of at most 1 kg "
* We had to change the design of the EP ...
* But our egg is safe again!

Or is it?

- We'd like the EP to protect any egg ...

1 kg

Or is it?

- We'd like the EP to protect any egg ...
-... from any weight ...

General Observations:

* Testing helps us to find (and then avoid): -bugs in the things that we build -bugs in the claims that we make about them
* Testing and Development working together ...
- But ...

Testing has Limits:

* "testing can be used to show the presence of bugs, but never to show their absence" [Edsger Dijkstra, 1969]
- To be absolutely certain that the EP 2.0 will protect any egg from any weight under 1 kg , we will need to prove it.

Equational Reasoning:

- Functional Languages are Good for Equational Reasoning (Gofer!)
- Much of what follows is inspired by the work of Richard Bird

Goal: to prove laws of the form $\mathrm{e}_{1}=\mathrm{e}_{2}$ relating program fragments e_{1} and e_{2}

- Goal: to calculate/synthesize efficient definitions of functions from clear, highlevel specifications

Laws of Numbers:

If n is a natural number, then either:
n = 0; or
$\mathrm{n}=1+\mathrm{m}$ for some (smaller) natural m

Functions on natural numbers:
$0 \quad+n=n$
$(1+m)+n=1+(m+n)$
Does this look at all familiar?

+ is associative:

$\forall \mathrm{n} . \forall \mathrm{p} . \forall \mathrm{q} .(\mathrm{n}+\mathrm{p})+\mathrm{q}=\mathrm{n}+(\mathrm{p}+\mathrm{q})$

$$
\text { If } \mathrm{n}=0 \text {, then }
$$

$$
(n+p)+q
$$

$$
=(0+p)+q
$$

(because $\mathrm{n}=0$)

$$
=p+q
$$

(definition of +)

$$
=0+(p+q)
$$

(definition of +)

+ is associative:

$\forall \mathrm{n} . \forall \mathrm{p} . \forall \mathrm{q} .(\mathrm{n}+\mathrm{p})+\mathrm{q}=\mathrm{n}+(\mathrm{p}+\mathrm{q})$
If $\mathrm{n}=(1+\mathrm{m})$, then
$(n+p)+q$
$=((1+m)+p)+q \quad$ (because $n=1+m)$
$=(1+(m+p))+q \quad($ definition of +$)$
$=1+((\mathrm{m}+\mathrm{p})+\mathrm{q}) \quad$ (definition of +)
$=1+(m+(p+q)) \quad$ (induction)
$=(1+m)+(p+q) \quad($ definition of +$)$
$=\mathrm{n}+(\mathrm{p}+\mathrm{q}) \quad$ (definition of +)

+ is associative:

We've shown:

- The property holds for $\mathrm{n}=0$
- If the property holds for $\mathrm{n}=\mathrm{m}$, then it holds for n $=(1+m)$
- So it holds for $\mathrm{n}=1$
- And for $\mathrm{n}=2$
- And for $\mathrm{n}=3$

In fact, we've shown that it holds for all n :
$\forall \mathrm{n} . \forall \mathrm{p} . \forall \mathrm{q} .(\mathrm{n}+\mathrm{p})+\mathrm{q}=\mathrm{n}+(\mathrm{p}+\mathrm{q})$

Laws of Numbers:

If n is a natural number, then either:
n = Zero; or
$\mathrm{n}=$ Succ m for some (smaller) natural m
data Nat $=$ Zero | Succ Nat
Functions on natural numbers: add Zero $\quad \mathrm{n}=\mathrm{n}$ add (Succ m) $\mathrm{n}=$ Succ (add m n)

add is associative:

$\forall \mathrm{n} . \forall \mathrm{p} . \forall \mathrm{q} . \operatorname{add}(\operatorname{add} \mathrm{n} \mathrm{p}) \mathrm{q}=\operatorname{add} \mathrm{n}(\operatorname{add} \mathrm{p} \mathrm{q})$
If $\mathrm{n}=$ Zero, then add (add n p) q
$=$ add (add Zero p) q (because $\mathrm{n}=$ Zero)
$=$ add p q (definition of add)
= add Zero (add p q) (definition of add)

add is associative:

$\forall \mathrm{n} . \forall \mathrm{p} . \forall \mathrm{q} . \operatorname{add}(\operatorname{add} \mathrm{n} \mathrm{p}) \mathrm{q}=\operatorname{add} \mathrm{n}(\operatorname{add} \mathrm{p} \mathrm{q})$
If $\mathrm{n}=$ Succ m , then
add (add n p) q
$=$ add (add (Succ m) p) q (because $n=1+m$)
$=$ add (Succ (add mp)) q (definition of +)
$=$ Succ (add (add mp) q) (definition of +)
= Succ (add m (add p q)) (induction)
$=$ add (Succ m) (add p q) (definition of +)
$=$ add n (add p q) (definition of +)

add is associative:

We've shown:

- The property holds for $\mathrm{n}=$ Zero
- If the property holds for $n=m$, then it holds for n = Succ m
- So it holds for n = Succ Zero
- And for n = Succ (Succ Zero)
- And for n = Succ (Succ (Succ Zero))

In fact, we've shown that it holds for all n : $\forall \mathrm{n} . \forall \mathrm{p} . \forall \mathrm{q}$. add $(\operatorname{add} \mathrm{n} \mathrm{p}) \mathrm{q}=\operatorname{add} \mathrm{n}(\operatorname{add} \mathrm{p} \mathrm{q})$

Laws in Haskell:

We can apply these same ideas to many other Haskell datatypes, not just numbers

Algebra for programs:

- Break into cases (no junk, no confusion)
- Induction (recursion)
* Equational reasoning

Where do Laws come From?

Laws typically arise in one of three ways:

- From function definitions (with care)
($\mathrm{x}: \mathrm{xs}$) $++\mathrm{ys}=\mathrm{x}:(\mathrm{xs}++\mathrm{ys})$
* From previously established laws map f.map g $=\operatorname{map}(\mathrm{f} . \mathrm{g})$
* From specifications of new functions sumSquares $\mathrm{n}=$ sum (map square [1..n])

Referential Transparency:

- The ability to replace equals with equals
- If $\mathrm{e}_{1}=\mathrm{e}_{2}$, then $\ldots \mathrm{e}_{1} \ldots=\ldots \mathrm{e}_{2} \ldots$
*The inability to observe sharing
- let $x=e$ in $(x, x)=(e, e)$
- let $x=$ print 1 in $(x, x)=($ print 1, print 1$)$

Tools:

- Extensionality:
- $\mathrm{f}=\mathrm{g} \Leftrightarrow \forall \mathrm{x} . \mathrm{fx}=\mathrm{gx}$
- Simple substitution/instantiation:
- From (f.g) x = f (g x), we can infer that $\left((1+) \cdot\left(2^{*}\right)\right) n=1+2 * n$

continued:

Case analysis:

- If xs :: [a], then xs = [], or xs = ($\mathrm{y}: \mathrm{ys}$) for some y and ys, or xs = \perp
- If b :: Bool, then $\mathrm{b}=$ False, $\mathrm{b}=$ True, or $\mathrm{b}=\perp$
- Induction:
- If property $\mathrm{P}(\mathrm{xs})$ holds for $\mathrm{xs}=[]$ and for xs $=\perp$, and for ($y: y s$) whenever it holds for $y s$, then $\mathrm{P}(\mathrm{xs})$ holds for all lists xs .

Introducing Bottom, \perp :

- We treat every type in Haskell as having a special element called bottom, written \perp
- \perp represents the value produced by expressions that fail to terminate properly
- Non-termination
- Error (e.g., missing pattern matching case)
- Explicit call of error "... message ..."
- Called "bottom" because it has the least amount of information of any value

Strictness:

* We say that a function is strict if it is guaranteed to evaluate its argument.
* Another way to say this: f is strict if, and only if $\mathrm{f} \perp=\perp$
- Examples:
- (1+) and not are both strict
- (\&\&) and (||) are strict in their left arguments, but not in their right
- map is strict in its list argument (but not the function)

Example:

- Suppose we specify:

$$
\begin{aligned}
& \mathrm{f}:: \text { [Int] -> [Int] } \\
& \mathrm{f}=\operatorname{map}(1+)
\end{aligned}
$$

Now we can calculate:

f []

$=\{$ by definition of f$\}$
map (1+) []
$=\{$ by definition of map $\}$
[]

continued:

We can also calculate:
f (x:xs)
$=\{$ by definition of $f\}$
map (1+) (x:xs)
$=\{$ by definition of map $\}$

$$
(1+x): \operatorname{map}(1+) x s
$$

$=\{$ by definition of f \}

$$
(1+x): f x s
$$

- Thus we have derived:

$$
\begin{array}{ll}
f & ::[\text { [Int }] \text {-> [Int] } \\
\mathrm{f}[] & =[] \\
\mathrm{f}(\mathrm{x}: \mathrm{xs}) & =(1+\mathrm{x}): \mathrm{fxs}
\end{array}
$$

Associativity of (++):

Claim: $x s++(y s++z s)=(x s++y s)++z s$, for all xs, ys, and zs

Proof by induction on xs:
Base case: xs = []

> [] ++ (ys ++ zs)
$=\{$ by definition of ++$\}$
ys ++ zs
$=\{$ by definition of ++$\}$

$$
([]++y s)++z s
$$

continued:

Base case: xs $=\perp$
lhs: $\quad \perp++$ (ys + + zs)

$$
\begin{aligned}
= & \{++ \text { is strict in its first argument }\} \\
& \perp
\end{aligned}
$$

rhs: $\quad(\perp++y s)++z s$
$=\{++$ is strict in its first argument $\}$
$\perp++\mathrm{ZS}$
$=\{++$ is strict in its first argument $\}$
\perp

continued:

Inductive case: (x:xs)

(x:xs) ++ (ys ++ zs)
$=\{$ by definition of ++$\}$
x : (xs ++ (ys ++ zs))
$=\{$ by induction $\}$
x : ($(x s++y s)++z s)$
$=\{$ by definition of ++$\}$
(x: (xs ++ ys)) ++ zs
$=\{$ by definition of ++$\}$
((x:xs) ++ ys) ++ zs

Fold Right:

A function from the prelude:
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr (\oplus) e $\left[x_{0}, x_{1}, x_{2}\right]=x_{0} \oplus\left(x_{1} \oplus\left(x_{2} \oplus e\right)\right)$
Examples:
and $=$ foldr (\&\&) True
concat $=$ foldr (++) []
Definition:
foldr fe[] =e
foldr fe(x:xs) = fx (foldr fexs)

Fold Left:

A function from the prelude:
foldl :: (a -> b -> a) -> a -> [b] -> a
foldl $(\oplus) e\left[x_{0}, x_{1}, x_{2}\right]=\left(\left(e \oplus x_{0}\right) \oplus x_{1}\right) \oplus x_{2}$
Examples:
sum = foldl (+) 0
product $=$ foldl (${ }^{*}$) 1
Definition:
fold fer] = e
foldl fe (x:xs) = foldl f (f ex) xs

Scan Left:

A function from the prelude:

$$
\begin{aligned}
& \text { scanl :: (a -> b -> a) -> a -> [b] -> [a] } \\
& \text { scanl }(\oplus) e\left[x_{0}, x_{1}, x_{2}\right] \\
& \quad=\left[e, e \oplus x_{0},\left(e \oplus x_{0}\right) \oplus x_{1},\left(\left(e \oplus x_{0}\right) \oplus x_{1}\right) \oplus x_{2}\right]
\end{aligned}
$$

Specification:

$$
\text { scanl fe } \quad=\operatorname{map}(\text { fold } \mathrm{fe} \text { e). inits }
$$

inits [] $=[[]]$
inits (x:xs) = [] : map (x:) (inits xs)

Calculating scanl:

It is easy to derive scanl fe[] = [e]

For non empty lists:

```
    scanl f e (x:xs)
    = map (foldl f e) (inits (x:xs))
    = map (foldl f e) ([] : map (x:) (inits xs))
    = foldl f e [] : map (foldl f e) (map (x:) (inits xs))
    = foldl f e [] : map (foldl f e . (x:)) (inits xs)
    = e : map (foldl f (f e x)) (inits xs)
    = e : scanl f (f e x) xs
```


Comparison:

- Specification:
scanl fe = map (foldl fe). inits
- Definition:
scanlfe [] = [e]
scanl fe (x:xs) = e : scanl f (f e x) xs
- The specification requires $O\left(\mathrm{n}^{2}\right)$ applications of f on a list of length n while the definition uses only n applications for a list of the same length.
- But, in terms of the results that we obtain, we know that the two versions are equal!

Scan Right:

A dual of scanl:

$$
\begin{array}{ll}
\text { scanr } & ::(a->b->b)->b->[a]->~[b] \\
\text { scanr fe e } & =\operatorname{map}(f o l d r f e) . \text { tails }
\end{array}
$$

scanr (\oplus) e $\left[x_{0}, x_{1}, x_{2}\right]$

$$
=\left[x_{0} \oplus\left(x_{1} \oplus\left(x_{2} \oplus e\right)\right), x_{1} \oplus\left(x_{2} \oplus e\right), x_{2} \oplus e, e\right]
$$

More efficient version:

$$
\begin{aligned}
\text { scanr fe }[] & =[e] \\
\text { scanr fe (x:xs) } & =\mathrm{fx}(\text { head } y s): \text { ys } \\
\text { where ys } & =\text { scanr fe xs }
\end{aligned}
$$

Maximum Segment Sum:

* Given a sequence of numbers, find the subsegment whose sum is largest:
- Example: maximal subsegment sum for the list $[-1,2,-3,5,-2,1,3,-2,-2,-3,6]$ is 7 (for the segment $[5,-2,1,3]$)
- Simple solution:
mss :: [Int] -> Int
mss $=$ maximum. map sum. segs
where segs = concat . map inits . tails
* Not a great performer ... O(n3)

Calculate!

mss
$=$ \{definition of mss\}
maximum . map sum . segs

Calculate!

mss
$=\{$ definition of segs $\}$
maximum . map sum . concat . map inits . tails

Calculate!

mss

$=\{$ using map f. concat $=$ concat. $\operatorname{map}(\operatorname{map} \mathrm{f})\}$
maximum . concat . map (map sum). map inits . tails
(map f.concat) $\left[\mathrm{Xs}_{1}, \mathrm{Xs}_{2}, \mathrm{Xs}_{3}\right]$
$=\operatorname{map} \mathrm{f}\left(\mathrm{XS}_{1}++\mathrm{xS}_{2}++\mathrm{xs}_{3}\right)$
$=\operatorname{map} f \mathrm{XS}_{1}++\operatorname{map} \mathrm{fxs}_{2}++\operatorname{map} \mathrm{f} \mathrm{XS}_{3}$
(concat . map (map f)) $\left[\mathrm{xs}_{1}, \mathrm{xs}_{2}, \mathrm{xs}_{3}\right]$
$=$ concat [map $f \mathrm{xs}_{1}, \operatorname{map} f \mathrm{xs}_{2}, \operatorname{map} f \mathrm{xs}_{3}$]
$=\operatorname{map} \mathrm{Xs}_{1}++\operatorname{map} \mathrm{f} \mathrm{s}_{2}++\operatorname{map} \mathrm{f} \mathrm{xs}_{3}$

Calculate!

mss
$=\{$ using map $f . \operatorname{map} g=\operatorname{map}(f . g)\}$
maximum . concat . map (map sum . inits) . tails
(map f.map g) $\left[x_{1}, x_{2}, x_{3}\right]$
$=\operatorname{map} f\left[g x_{1}, g x_{2}, g x_{3}\right]$
$=\left[f\left(g x_{1}\right), f\left(g x_{2}\right), f\left(g x_{3}\right)\right]$
$\operatorname{map}(f . g)\left[x_{1}, x_{2}, x_{3}\right]$
$=\left[(f . g) x_{1},(f . g) x_{2}(f . g) x_{3}\right]$
$=\left[f\left(g x_{1}\right), f\left(g x_{2}\right), f\left(g x_{3}\right)\right]$

Calculate!

$$
\begin{aligned}
& \text { mss } \\
= & \{\text { the "bookkeeping law" }\}
\end{aligned}
$$

maximum . map maximum . map (map sum . inits) . tails
maximum . concat
= maximum . map maximum
General form:
foldr fa. concat $=$ foldr fa. map (foldr fa) if f is associative with unit a

Calculate!

mss
$=\{$ Definition of scanl $\}$

maximum . map maximum . map (scanl (+) 0) . tails

Definition:
scanl fe=map (foldl fe). inits

Calculate!

$\begin{aligned} & \operatorname{mss} \\ = & \{u s i n g \operatorname{map} f . \operatorname{map} g=\operatorname{map}(f . g)\}\end{aligned}$
maximum . map (maximum . scanl (+) 0). tails

$$
\begin{array}{r}
\operatorname{map} f . \operatorname{map} g=\operatorname{map}(f . g) \\
(\text { again } \ldots)
\end{array}
$$

Calculate!

mss
$=\{$ fold-scan fusion $\}$
maximum . map (foldr f 0). tails
where $f x y=\max 0(x+y)$

We can prove that: maximum . scanl (+) $0=$ foldr f 0 (A special case of a general property called "Fold-scan fusion")

Calculate!

mss
$=\{$ definition of scanr $\}$
maximum . scanr f 0
where $f x y=\max 0(x+y)$

Definition of scanr: scanr fe= map (foldr fe) . tails

A simple, linear time algorithm, courtesy of equational reasoning!

Calculate!

Remember:

$$
\begin{aligned}
& \operatorname{scanr}(\oplus) \mathrm{e}\left[\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{2}\right] \\
& =\left[\mathrm{x}_{0} \oplus\left(\mathrm{x}_{1} \oplus\left(\mathrm{x}_{2} \oplus \mathrm{e}\right)\right)_{,}\right. \\
& \mathrm{X}_{1} \oplus\left(\mathrm{x}_{2} \oplus \mathrm{e}\right), \\
& \mathrm{x}_{2} \oplus \mathrm{e}, \\
& \mathrm{e}]
\end{aligned}
$$

$=\{$ definition of scanr $\}$
maximum . scanr f 0
where $\mathrm{f} x=\max 0(x+y)$
mss xs = loop 00 (reverse xs)
where

$$
\begin{aligned}
& \text { loop } m \vee[] \\
& \text { loop } m \vee(x: x s)= m \\
&= \text { let } y=\max 0(x+v) \\
& \text { in loop }(\max m y) y x s
\end{aligned}
$$

This version of the definition is not very intuitive ... but we know by construction that it is correct!

A Quick Check:

Just to be sure, let's load these definitionc:- 'ugs and quickly check to see if they arn

Main> quickCho~ OK, n>-

Be

Hmm, now that looks like another useful tool, doesn't it ...

Summary:

- The ability to reason about code is essential if you care about its behavior (for example, in safety or security critical applications)
- Compilers rely on equivalences between program fragments to justify/validate some optimizations
- Functional Languages are Good for Equational Reasoning
- Referential transparency/lack of side effects makes reasoning more tractable
- It helps to build up a collection of laws and results that you can draw on in program verification or synthesis!

