

Testing has Limits:

- "testing can be used to show the presence of bugs, but never to show their absence" [Edsger Dijkstra, 1969]
- To be absolutely certain that the EP 2.0 will protect any egg from any weight under 1kg, we will need to prove it.

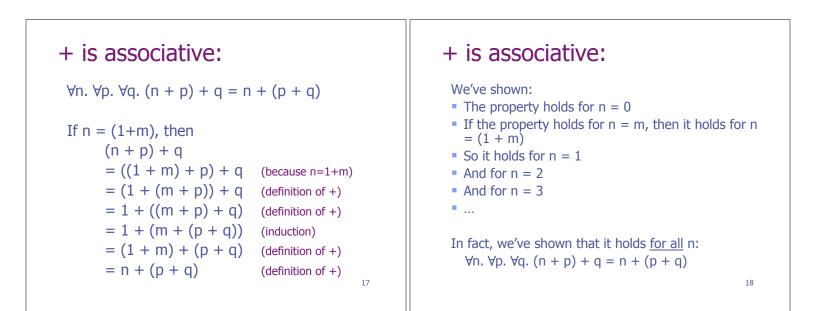


Equational Reasoning:

- Functional Languages are <u>Good for</u> <u>Equational Reasoning (Gofer!)</u>
- Much of what follows is inspired by the work of Richard Bird
- Goal: to prove laws of the form e₁=e₂ relating program fragments e₁ and e₂
- Goal: to calculate/synthesize efficient definitions of functions from clear, highlevel specifications

14

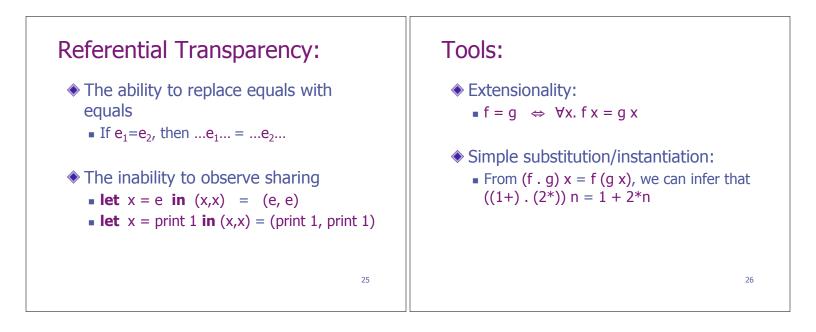
+ is associative:
\forall n. \forall p. \forall q. (n + p) + q = n + (p + q)
If $n = 0$, then (n + p) + q
= (0 + p) + q (because n = 0)
= p + q (definition of +) $= 0 + (p + q) (definition of +)$
16

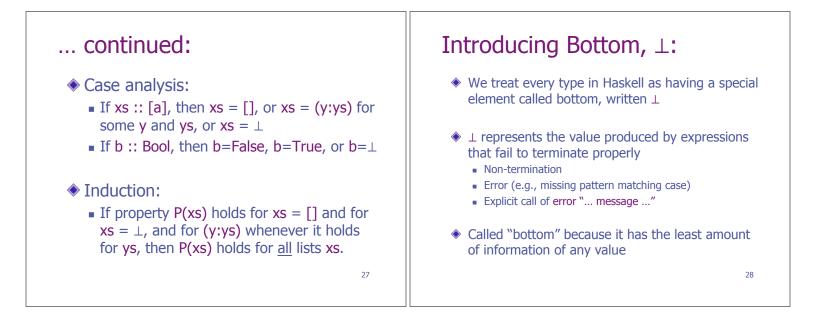


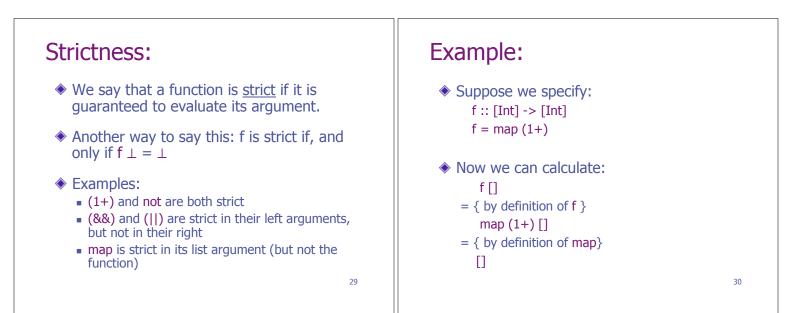
Laws of Numbers: add is associative: If n is a natural number, then either: \forall n. \forall p. \forall q. add (add n p) q = add n (add p q) n = Zero; orn = Succ m for some (smaller) natural m If n = Zero, then add (add n p) q data Nat = Zero | Succ Nat = add (add Zero p) q (because n = Zero) = add p q (definition of add) Functions on natural numbers: = add Zero (add p q) (definition of add) add Zero n = nadd (Succ m) n = Succ (add m n)19 20

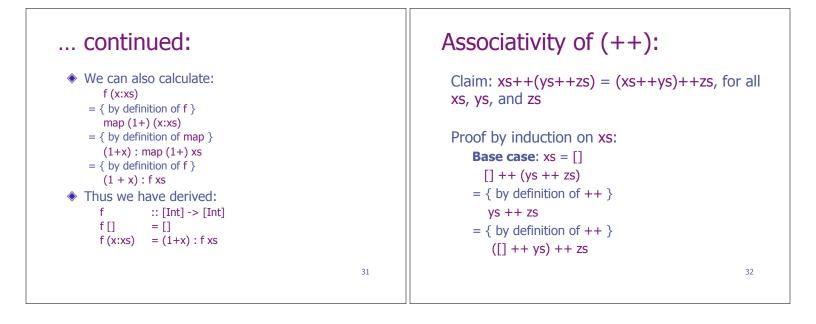
add is associative:	add is associative:
$ \forall n. \forall p. \forall q. add (add n p) q = add n (add p q) $ If n = Succ m, then add (add n p) q = add (add (Succ m) p) q (because n=1+m) = add (Succ (add m p)) q (definition of +) = Succ (add (add m p) q) (definition of +) = Succ (add m (add p q)) (induction) = add (Succ m) (add p q) (definition of +) = add n (add p q) (definition of +) = add n (add p q) (definition of +)	 We've shown: The property holds for n = Zero If the property holds for n = m, then it holds for n = Succ m So it holds for n = Succ Zero And for n = Succ (Succ Zero) And for n = Succ (Succ (Succ Zero)) In fact, we've shown that it holds <u>for all</u> n: ∀n. ∀p. ∀q. add (add n p) q = add n (add p q)

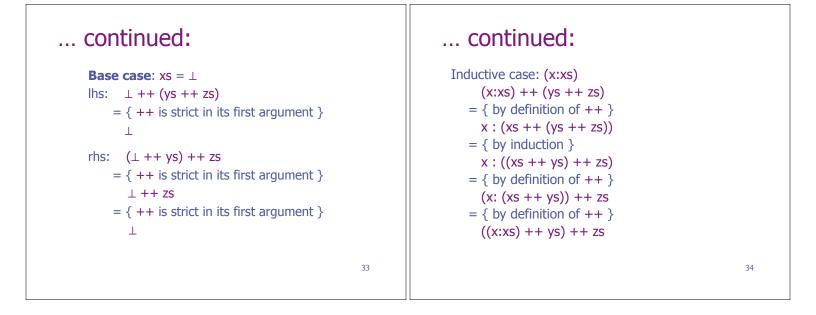
Laws in Haskell: Where do Laws come From? We can apply these same ideas to many other Laws typically arise in one of three ways: Haskell datatypes, not just numbers From function definitions (with care) Algebra for programs: (x:xs) ++ ys = x : (xs ++ ys)Break into cases (no junk, no confusion) From previously established laws Induction (recursion) map f . map g = map (f . g)Equational reasoning From specifications of new functions sumSquares n = sum (map square [1..n]) 23 24











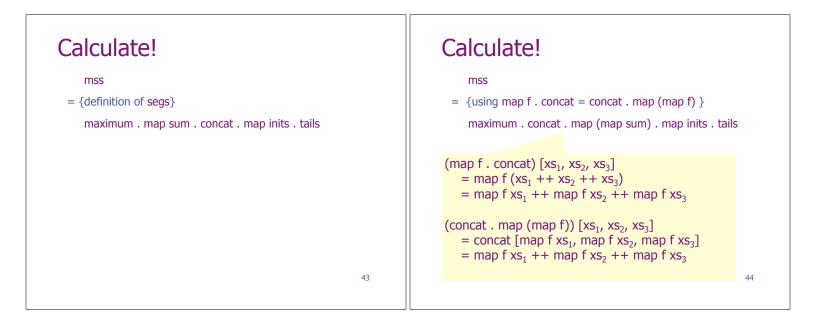
Fold Right:	Fold Left:
A function from the prelude:	A function from the prelude:
foldr :: $(a -> b -> b) -> b -> [a] -> b$	foldl :: (a -> b -> a) -> a -> [b] -> a
foldr $(\oplus) e [x_0, x_1, x_2] = x_0 \oplus (x_1 \oplus (x_2 \oplus e))$	foldl (\oplus) e [x ₀ ,x ₁ ,x ₂] = ((e \oplus x ₀) \oplus x ₁) \oplus x ₂
Examples:	Examples:
and = foldr (&&) True	sum = foldl (+) 0
concat = foldr (++) []	product = foldl (*) 1
Definition:	Definition:
foldr f e [] = e	foldI f e [] = e
foldr f e (x:xs) = f x (foldr f e xs)	foldI f e (x:xs) = foldI f (f e x) xs
35	36

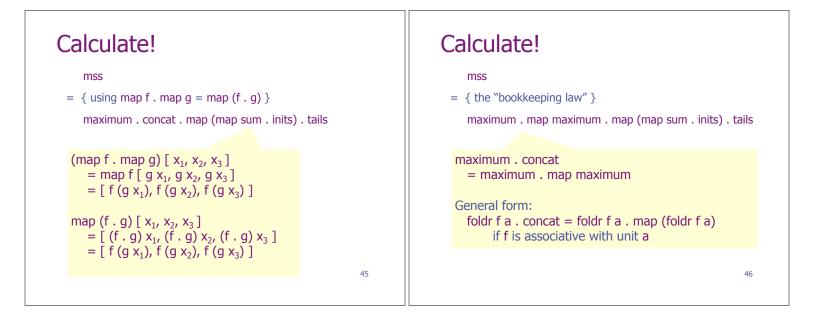
Scan Left:

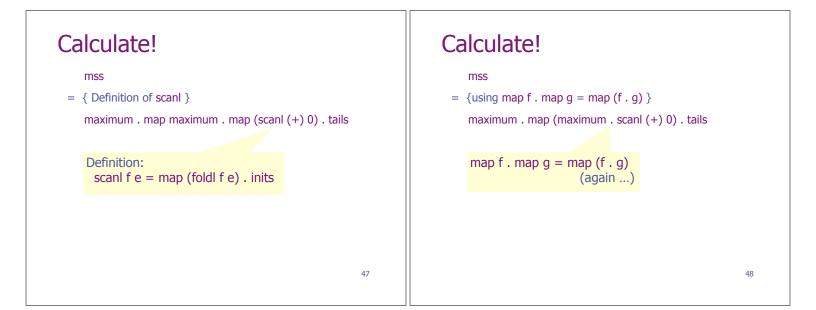
Scan Left:	Calculating scanl:
A function from the prelude: scanl :: $(a \rightarrow b \rightarrow a) \rightarrow a \rightarrow [b] \rightarrow [a]$ scanl $(\oplus) e [x_0, x_1, x_2]$ = $[e, e \oplus x_0, (e \oplus x_0) \oplus x_1, ((e \oplus x_0) \oplus x_1) \oplus x_2]$ Specification: scanl f e = map (fold f e) . inits inits $[] = [[]]$	It is easy to derive scanl f e [] = [e] For non empty lists: scanl f e (x:xs) = map (foldI f e) (inits (x:xs)) = map (foldI f e) ([] : map (x:) (inits xs)) = foldI f e [] : map (foldI f e) (map (x:) (inits xs)) = foldI f e [] : map (foldI f e . (x:)) (inits xs) = e : map (foldI f (f e x)) (inits xs)
inits (x:xs) = [] : map (x:) (inits xs)	= e : scanl f (f e x) xs

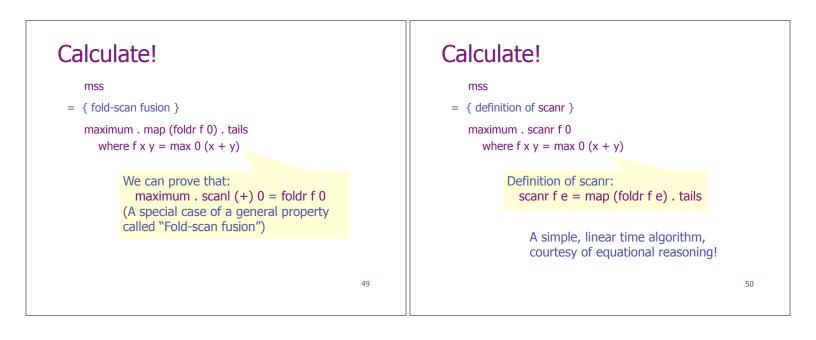
Comparison:	Scan Right:
Specification: scanl f e = map (foldl f e) . inits	A dual of scanl: scanr :: $(a \rightarrow b \rightarrow b) \rightarrow b \rightarrow [a] \rightarrow [b]$ scanr f e = map (foldr f e). tails
 Definition: scanl f e [] = [e] scanl f e (x:xs) = e : scanl f (f e x) xs 	scanr (\oplus) e [x ₀ , x ₁ , x ₂] = [x ₀ \oplus (x ₁ \oplus (x ₂ \oplus e)), x ₁ \oplus (x ₂ \oplus e), x ₂ \oplus e, e]
The specification requires O(n ²) applications of f on a list of length n while the definition uses only n applications for a list of the same length.	More efficient version: scanr f e [] = [e] scanr f e (x:xs) = f x (head ys) : ys
 But, in terms of the results that we obtain, we know that the two versions are equal! 	where ys = scanr f e xs

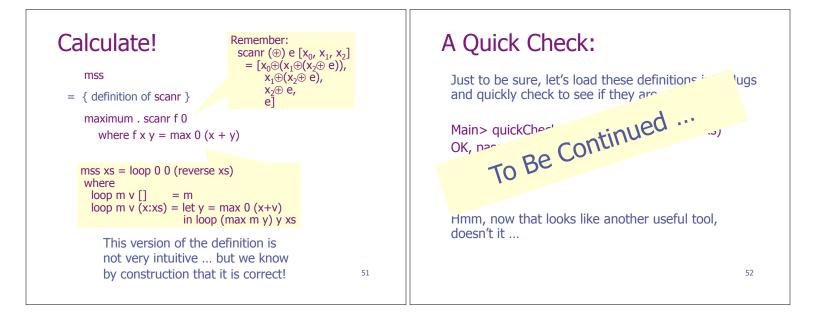












Summary:

- The ability to reason about code is essential if you care about its behavior (for example, in safety or security critical applications)
- Compilers rely on equivalences between program fragments to justify/validate some optimizations
- Functional Languages are Good for Equational Reasoning
- Referential transparency/lack of side effects makes reasoning more tractable
- It helps to build up a collection of laws and results that you can draw on in program verification or synthesis!