
1

CS 457/557: Functional
Languages

Equational Reasoning: Algebra of Programming

Mark P Jones

Portland State University

2

What Makes a Good Program?

! " Performance?

! " Code size?

! " Maintainability?

! " Above all else, correctness!

! " But what does that mean? How can it be
established?

3

egg

Testing:

! " Tests confirm expectations

about the way things work

! " If you drop a weight …

! " … onto an egg …

! " … Scrambled Egg!

1 kg

4

egg

1 kg

Testing:

! " Suppose it’s our job to

protect eggs from falling
weights …

! " We might design an EP

(Egg ProtectorTM) to
accomplish this …

! " Then we test again …

! " Hooray! The egg is safe! !

5

egg

10 kg

Generalizing from Tests:

! " “The EP will protect an egg from

a falling weight”

! " It can be dangerous to

generalize from the
results of testing!

! " Scrambled egg, and a crushed EP "

 How embarrassing …

6

egg

Refining the claim:

! " Think back to our test:

! " “The EP will protect an egg from a

falling weight of at most 1kg”

1 kg
! " This isn’t such a general statement

…

! " … but it describes the EP’s

properties more accurately

7

egg

1 kg

More Tests:

! " Oops, another
embarrassing oversight!

! " “The EP will protect an egg
from a falling weight of at

most 1kg”

8

egg

Refining the EP Design:

! " “The EP will protect an egg
from a falling weight of at

most 1kg”

EP 1.0

9

egg

1 kg

Refining the EP Design:

! " We had to change the
design of the EP …

! " “The EP 2.0 will protect an
egg from a falling weight of

at most 1kg”

! " But our egg is safe again!
EP 2.0

10

Or is it?

1 kg

egg

! " We’d like the EP to protect
any egg …

11

Or is it?

egg

1 kg

! " We’d like the EP to protect
any egg …

! " … from any weight …

12

egg

General Observations:

! "Testing helps us to find (and then avoid):

#"bugs in the things that we build

#"bugs in the claims that we make about them

! " Testing and Development working together …

! " But …

13

egg

1 kg

Testing has Limits:

! " To be absolutely certain that the

EP 2.0 will protect any egg from
any weight under 1kg, we will

need to prove it.

! " "testing can be used to show

the presence of bugs, but
never to show their

absence" [Edsger Dijkstra,
1969]

14

Equational Reasoning:

! " Functional Languages are Good for
Equational Reasoning (Gofer!)

! " Much of what follows is inspired by the
work of Richard Bird

! " Goal: to prove laws of the form e1=e2
relating program fragments e1 and e2

! " Goal: to calculate/synthesize efficient
definitions of functions from clear, high-
level specifications

15

Laws of Numbers:

If n is a natural number, then either:

 n = 0; or

 n = 1 + m for some (smaller) natural m

Functions on natural numbers:

 0 + n = n

 (1+m) + n = 1 + (m + n)

Does this look at all familiar?

16

+ is associative:

!n. !p. !q. (n + p) + q = n + (p + q)

If n = 0, then

 (n + p) + q

 = (0 + p) + q (because n = 0)

 = p + q (definition of +)

 = 0 + (p + q) (definition of +)

17

+ is associative:

!n. !p. !q. (n + p) + q = n + (p + q)

If n = (1+m), then

 (n + p) + q

 = ((1 + m) + p) + q (because n=1+m)

 = (1 + (m + p)) + q (definition of +)

 = 1 + ((m + p) + q) (definition of +)

 = 1 + (m + (p + q)) (induction)

 = (1 + m) + (p + q) (definition of +)

 = n + (p + q) (definition of +)
18

+ is associative:

We’ve shown:

$" The property holds for n = 0

$" If the property holds for n = m, then it holds for n
= (1 + m)

$" So it holds for n = 1

$" And for n = 2

$" And for n = 3

$" …

In fact, we’ve shown that it holds for all n:

 !n. !p. !q. (n + p) + q = n + (p + q)

19

Laws of Numbers:

If n is a natural number, then either:

 n = Zero; or

 n = Succ m for some (smaller) natural m

data Nat = Zero | Succ Nat

Functions on natural numbers:

 add Zero n = n

 add (Succ m) n = Succ (add m n)

20

add is associative:

!n. !p. !q. add (add n p) q = add n (add p q)

If n = Zero, then

 add (add n p) q

 = add (add Zero p) q (because n = Zero)

 = add p q (definition of add)

 = add Zero (add p q) (definition of add)

21

add is associative:

!n. !p. !q. add (add n p) q = add n (add p q)

If n = Succ m, then

 add (add n p) q

 = add (add (Succ m) p) q (because n=1+m)

 = add (Succ (add m p)) q (definition of +)

 = Succ (add (add m p) q) (definition of +)

 = Succ (add m (add p q)) (induction)

 = add (Succ m) (add p q) (definition of +)

 = add n (add p q) (definition of +)
22

add is associative:

We’ve shown:

$" The property holds for n = Zero

$" If the property holds for n = m, then it holds for n
= Succ m

$" So it holds for n = Succ Zero

$" And for n = Succ (Succ Zero)

$" And for n = Succ (Succ (Succ Zero))

$" …

In fact, we’ve shown that it holds for all n:

 !n. !p. !q. add (add n p) q = add n (add p q)

23

Laws in Haskell:

We can apply these same ideas to many other
Haskell datatypes, not just numbers

Algebra for programs:

! " Break into cases (no junk, no confusion)

! " Induction (recursion)

! " Equational reasoning

24

Where do Laws come From?

Laws typically arise in one of three ways:

! " From function definitions (with care)
(x:xs) ++ ys = x : (xs ++ ys)

! " From previously established laws
map f . map g = map (f . g)

! " From specifications of new functions
sumSquares n = sum (map square [1..n])

25

Referential Transparency:

! "The ability to replace equals with
equals

#" If e1=e2, then …e1… = …e2…

! "The inability to observe sharing

#" let x = e in (x,x) = (e, e)

#" let x = print 1 in (x,x) = (print 1, print 1)

26

Tools:

! "Extensionality:

#" f = g ! "x. f x = g x

! "Simple substitution/instantiation:

#" From (f . g) x = f (g x), we can infer that
((1+) . (2*)) n = 1 + 2*n

27

… continued:

! "Case analysis:

#" If xs :: [a], then xs = [], or xs = (y:ys) for
some y and ys, or xs = #

#" If b :: Bool, then b=False, b=True, or b=#$

! " Induction:

#" If property P(xs) holds for xs = [] and for
xs = #, and for (y:ys) whenever it holds
for ys, then P(xs) holds for all lists xs.

28

Introducing Bottom, #:

! " We treat every type in Haskell as having a special

element called bottom, written #$

! " # represents the value produced by expressions
that fail to terminate properly
#" Non-termination

#" Error (e.g., missing pattern matching case)

#" Explicit call of error “… message …”

! " Called “bottom” because it has the least amount
of information of any value

29

Strictness:

! "We say that a function is strict if it is
guaranteed to evaluate its argument.

! " Another way to say this: f is strict if, and
only if f # = #$

! " Examples:
#" (1+) and not are both strict

#" (&&) and (||) are strict in their left arguments,
but not in their right

#" map is strict in its list argument (but not the
function)

30

Example:

! " Suppose we specify:

 f :: [Int] -> [Int]

 f = map (1+)

! " Now we can calculate:

 f []

= { by definition of f }

 map (1+) []

= { by definition of map}

 []

31

… continued:

! " We can also calculate:
 f (x:xs)

= { by definition of f }

 map (1+) (x:xs)

= { by definition of map }

 (1+x) : map (1+) xs

= { by definition of f }

 (1 + x) : f xs

! " Thus we have derived:
 f :: [Int] -> [Int]

 f [] = []

 f (x:xs) = (1+x) : f xs

32

Associativity of (++):

Claim: xs++(ys++zs) = (xs++ys)++zs, for all
xs, ys, and zs

Proof by induction on xs:

Base case: xs = []

 [] ++ (ys ++ zs)

= { by definition of ++ }

 ys ++ zs

= { by definition of ++ }

 ([] ++ ys) ++ zs

33

… continued:

Base case: xs = #

lhs: # ++ (ys ++ zs)

 = { ++ is strict in its first argument }

 #

rhs: (# ++ ys) ++ zs

 = { ++ is strict in its first argument }

 # ++ zs

 = { ++ is strict in its first argument }

 #

34

… continued:

Inductive case: (x:xs)

 (x:xs) ++ (ys ++ zs)

 = { by definition of ++ }

 x : (xs ++ (ys ++ zs))

 = { by induction }

 x : ((xs ++ ys) ++ zs)

 = { by definition of ++ }

 (x: (xs ++ ys)) ++ zs

 = { by definition of ++ }

 ((x:xs) ++ ys) ++ zs

35

Fold Right:

A function from the prelude:

 foldr :: (a -> b -> b) -> b -> [a] -> b

 foldr (%) e [x0,x1,x2] = x0 % (x1 % (x2 % e))

Examples:

 and = foldr (&&) True

 concat = foldr (++) []

Definition:

 foldr f e [] = e

 foldr f e (x:xs) = f x (foldr f e xs)

36

Fold Left:

A function from the prelude:

 foldl :: (a -> b -> a) -> a -> [b] -> a

 foldl (%) e [x0,x1,x2] = ((e % x0) % x1) % x2

Examples:

 sum = foldl (+) 0

 product = foldl (*) 1

Definition:

 foldl f e [] = e

 foldl f e (x:xs) = foldl f (f e x) xs

37

Scan Left:

A function from the prelude:

 scanl :: (a -> b -> a) -> a -> [b] -> [a]

 scanl (%) e [x0,x1,x2]

 = [e, e%x0, (e%x0)%x1, ((e%x0)%x1)%x2]

Specification:

 scanl f e = map (foldl f e) . inits

 inits [] = [[]]

 inits (x:xs) = [] : map (x:) (inits xs)

38

Calculating scanl:

It is easy to derive scanl f e [] = [e]

For non empty lists:

scanl f e (x:xs)

= map (foldl f e) (inits (x:xs))

= map (foldl f e) ([] : map (x:) (inits xs))

= foldl f e [] : map (foldl f e) (map (x:) (inits xs))

= foldl f e [] : map (foldl f e . (x:)) (inits xs)

= e : map (foldl f (f e x)) (inits xs)

= e : scanl f (f e x) xs

39

Comparison:

! " Specification:

 scanl f e = map (foldl f e) . inits

! " Definition:

 scanl f e [] = [e]

 scanl f e (x:xs) = e : scanl f (f e x) xs

! " The specification requires O(n2) applications of f
on a list of length n while the definition uses only
n applications for a list of the same length.

! " But, in terms of the results that we obtain, we
know that the two versions are equal!

40

Scan Right:

A dual of scanl:

 scanr :: (a -> b -> b) -> b -> [a] -> [b]

 scanr f e = map (foldr f e) . tails

 scanr (%) e [x0, x1, x2]

 = [x0%(x1%(x2% e)), x1%(x2% e), x2% e, e]

More efficient version:

 scanr f e [] = [e]

 scanr f e (x:xs) = f x (head ys) : ys

 where ys = scanr f e xs

41

Maximum Segment Sum:

! " Given a sequence of numbers, find the
subsegment whose sum is largest:
#" Example: maximal subsegment sum for the list

[-1, 2, -3, 5, -2, 1, 3, -2, -2, -3, 6] is 7 (for the
segment [5, -2, 1, 3])

! " Simple solution:
mss :: [Int] -> Int

mss = maximum . map sum . segs

 where segs = concat . map inits . tails

! " Not a great performer … O(n3)
42

Calculate!
 mss

= {definition of mss}

 maximum . map sum . segs

43

Calculate!
 mss

= {definition of segs}

 maximum . map sum . concat . map inits . tails

44

Calculate!
 mss

= {using map f . concat = concat . map (map f) }

 maximum . concat . map (map sum) . map inits . tails

(map f . concat) [xs1, xs2, xs3]
 = map f (xs1 ++ xs2 ++ xs3)

 = map f xs1 ++ map f xs2 ++ map f xs3

(concat . map (map f)) [xs1, xs2, xs3]
 = concat [map f xs1, map f xs2, map f xs3]
 = map f xs1 ++ map f xs2 ++ map f xs3

45

Calculate!
 mss

= { using map f . map g = map (f . g) }

 maximum . concat . map (map sum . inits) . tails

(map f . map g) [x1, x2, x3]
 = map f [g x1, g x2, g x3]

 = [f (g x1), f (g x2), f (g x3)]

map (f . g) [x1, x2, x3]
 = [(f . g) x1, (f . g) x2, (f . g) x3]
 = [f (g x1), f (g x2), f (g x3)]

46

Calculate!
 mss

= { the “bookkeeping law” }

 maximum . map maximum . map (map sum . inits) . tails

maximum . concat
 = maximum . map maximum

General form:

 foldr f a . concat = foldr f a . map (foldr f a)
 if f is associative with unit a

47

Calculate!
 mss

= { Definition of scanl }

 maximum . map maximum . map (scanl (+) 0) . tails

Definition:
 scanl f e = map (foldl f e) . inits

48

Calculate!
 mss

= {using map f . map g = map (f . g) }

 maximum . map (maximum . scanl (+) 0) . tails

map f . map g = map (f . g)
 (again …)

49

Calculate!
 mss

= { fold-scan fusion }

 maximum . map (foldr f 0) . tails

 where f x y = max 0 (x + y)

We can prove that:
 maximum . scanl (+) 0 = foldr f 0

(A special case of a general property
called “Fold-scan fusion”)

50

Calculate!
 mss

= { definition of scanr }

 maximum . scanr f 0

 where f x y = max 0 (x + y)

Definition of scanr:
 scanr f e = map (foldr f e) . tails

A simple, linear time algorithm,
courtesy of equational reasoning!

51

Calculate!
 mss

= { definition of scanr }

 maximum . scanr f 0

 where f x y = max 0 (x + y)

Remember:
 scanr (%) e [x0, x1, x2]
 = [x0%(x1%(x2% e)),

 x1%(x2% e),
 x2% e,
 e]

mss xs = loop 0 0 (reverse xs)
 where
 loop m v [] = m
 loop m v (x:xs) = let y = max 0 (x+v)
 in loop (max m y) y xs

This version of the definition is
not very intuitive … but we know

by construction that it is correct! 52

A Quick Check:

Just to be sure, let’s load these definitions into Hugs
and quickly check to see if they are equal …

Main> quickCheck (\xs -> mss xs == mss' xs)

OK, passed 100 tests.

Main>

Hmm, now that looks like another useful tool,
doesn’t it …

To Be Continued …

53

Summary:

! " The ability to reason about code is essential if you
care about its behavior (for example, in safety or
security critical applications)

! " Compilers rely on equivalences between program
fragments to justify/validate some optimizations

! " Functional Languages are Good for Equational
Reasoning

! " Referential transparency/lack of side effects
makes reasoning more tractable

! " It helps to build up a collection of laws and
results that you can draw on in program
verification or synthesis!

