A simple interactive tree editor

Mark P. Jones

September 19, 1996

1 Forests and trees

We use standard datatypes to represent forests of so-called general trees:

type Forest a [Node a)
data Node a = Node a (Forest a)

From these definitions, we can see that a forest is a list of nodes, each of which
has a value and some children. Here is a simple example:

myForest :: Forest String
myForest = [Node “17
[Node “1.1”
[Node “1.1.1” []],
Node “1.2” []],
Node “27 []]

Next we define two simple, general purpose operations for working with forests.
First, forestElems, which enumerates the values in a forest in depth-first order:

forestElems :: Forest a — [a]
forestElems = concat.map nodeElems
where nodeElems (Node © ¢s) = x: forestElems cs

The second function is depthMap, which traverses a forest and creates a new
one of the same shape by applying a function that takes an extra parameter

supplying the depth of the tree at that point:

depthMap x (Int — a — b) — Int — Forest a — Forest b
depthMap f d = map depthNode
where depthNode (Node z cs)
= Node (f d z) (depthMap f (d +1) cs)

These functions can be used to help display the structure of a forest:

showForest :: Forest String — String
showForest = wunlines. forestElems . depthMap indent 1
where indent d © = replicate (2% d) '\SP' ++z

2 Navigation

For the purposes of navigation, we need to have a way of describing positions
within a forest. For any position, we need to capture:

e The nodes to the left of the current position (which we will keep in a list
with rightmost element first, that is, in reverse order).

e The nodes to the right of the current position, also in a list.

e A sequence of levels up the tree, from the current position to the root.
We need to know the position within each level, which we represent by a
triple (left, x, right) where left and right are the siblings on either side,
and x is the value of the dominating node.

This leads naturally to the following datatype definition:

data Position a = Pos {left :: [Node a,
up :: [Level a,
right :: [Node al}

type Level a = ([Node al], a, [Node a])

It is easy to convert between forests and positions (although position information
is lost, because there can be many different positions within a given forest):

rootPosition ;2 Forest a — Position a

rootPosition f = Pos|][]f

reconstruct it Position a — Forest a

reconstruct (Pos ls us rs) = foldl recon (reverse ls ++ rs) us
where recon fs (Is, z, rs) = reverse ls + [Node z fs] +rs

The following function finds the value (if any) associated with the node on the
immediate right of current position:

right Value = Position a — Maybe a
right Value (Pos _ _ (Node z _:_)) = Justzx
right Value _ = Nothing

There are four functions for moving around in a forest, either to the left, to the
right, up, or down. In the last case, there are two possibilities: down the tree on
the immediate left of the current position, or down the tree on the immediate
right. For simplicity, we will only consider the latter. All of these functions could
fail if the requested move is not possible, so the resulting position is returned in
a Maybe type, as shown in Figure 1.

Each of these functions works by inspecting a list and taking some action if it
is non-empty — which signals that a move is possible. We capture this general
pattern in the following repositioning function:

repos o [b] = (b — [b] — Position a) — Maybe (Position a)
repos [] f = Nothing
repos (z : zs) f Just (f x xs)

We will also want simple methods for inserting and deleting nodes to the right
of the current position (we won’t bother with the obvious duals for insertion or
deletion on the left).

insertNode :: a — Position a — Position a
insertNode x (Pos Is us rs) = Pos Is us (Node x [] : rs)
deleteNode i Position a — Maybe (Position a)
deleteNode (Pos ls us rs) = repos rs (\- ns — Pos Is us ns)

moveUp, moveDown, moveLeft, moveRight
Position a — Maybe (Position a)

moveLeft (Pos ls us 1s)
= repos ls (\n ns — Pos ns us (n:rs))

moveRight (Pos s us rs)
= repos rs (\n ns — Pos (n : ls) us ns)

moveDown (Pos ls us rs)
= repos rs (\(Node x cs) ns — Pos [] ((Is, z, ns) : us) cs)

moveUp (Pos s us rs)
= repos us (\(as, x, bs) vs — Pos as vs (make x : bs))
where make = Node x (reverse Is +H rs)

Figure 1: Movement functions

As a mildly amusing little extension, we can define a reflect operator:

reflect ;2 Position a — Position a
reflect (Pos ls us rs) = Pos rs us Is

This could have been used to define moveLeft in terms of moveRight (or vice

versa).

3 User interface

In this section, we present an interactive program that uses the functions de-
scribed above to implement an interactive tree editor. This program allows a
user to navigate around a forest (entering a child node (e), moving to the next
child (n), moving back a child (b), or moving up to the parent(p)), and provides
commands to insert a new node (i), to delete an existing node (d), and to show
the current forest (s). The output produced by the show command includes a

marker to indicate the current position in the forest.

The main interactive loop is defined by the code in Figure 2.

loop i Pos — 10 ()

loop p = do ch < getChar
putChar "\n’
case ch of

/\n/

—— whitepace
— loop p

"\t' — loop p
v

/k/

— loop p

—— basic movement

tryTo p moveDown noNode loop
tryTo p moveRight noNode loop
tryTo p moveLeft noPrev loop
tryTo p moveUp noPar loop

Ll

—— delete and insert
— tryTo p deleteNode noNode loop
— do putStrLn “Enter new key: ”
key «— getLine
loop (insertNode key p)

—— display commands
— tryTo p rightValue noNode $\ z —
putStrLn x >> loop p

— do putStr
(showForest
(reconstruct
(insertNode “<*>” p)))

loop p

—— a reflection
— loop (reflect p)

—— quit command
— return ()

— do putStrLn “Error: bad command”
loop p

Figure 2: User Interface

5

This definition has been simplified by abstracting out a common pattern for
dealing with the results of Maybe types:

tryTo i Pos — (Pos — Maybe a) — String — (a — 10 ()) — 10 ()
tryTop f ec = casef pof

Just x — cx

Nothing — do putStrLn e

loop p

For convenience, we use the following type synonym to describe the particular
instance of the Position type that is used in this program:

type Pos = Position String

We have also abstracted out the strings produced by some of the error messages:

noNode = “Error: not at node”
noPrev = “Error: no previous sibling”
noPar = “Error: node has no parent”

A simple program that starts up the tree editor at the root of myForest can
now be defined as follows:

main = loop (rootPosition myForest)

