Using Types

Slides thanks to Mark Jones



Expressions Have Types:

The type of an expression tells you what kind of
value you might expect to see if you evaluate that
expression

In Haskell, read “::” as “has type”

Examples:
— 1:Int, 'a':: Char, True :: Bool, 1.2 :: Float, ...

You can even ask GHCI for the type of an
expression: :t expr



Type Errors:

Prelude> "a" && True

<interactive>:26:1:

‘(gPu[dn't match expected type Bool®" with actual type
ar

In the first argument of (&&)*", namely "a-"
In the expression: "a" && True
In an equation for "1It": It = "a" && True

Prelude> odd 1 + 2

<interactive>:29:7:
No instance for (Num Bool)
arising from a use of +°
Possible fTix: add an instance declaration for (Num Bool)
In the expression: odd 1 + 2
In an equation for 1t": It =odd 1 + 2



Pairs:

A pair packages two values into one
(1, 2) (‘a', 'z') (True, False)

Components can have different types
(1, 'z") (‘a’, False) (True, 2)

The type of a pair whose first component is of type
A and second component is of type B is written
(A,B)

What are the types of the pairs above?



Operating on Pairs:

 There are built-in functions for extracting the
first and second component of a pair:

—fst (True, 2) = True
—snd (0,7) =7

e |sthe following property true?
For any pair p, (fstp,snd p)=p



Lists:

Lists can be used to store zero or more elements, in
sequence, in a single value:
1 [3, 2, 3] ['a', 'z'] [True, True, False]

All of the elements in a list must have the same
type

The type of a list whose elements are of type A is
written as [A]

What are the types of the lists above?



Overloading

e Some expressions can have more than one
type

e Examples
— 23
— [
—fx=x<3

— fx =show x ++ “is the answer”



One way to get these is overloading

e Three important causes of overloading

e Numbers

— Num

e Comparisons
— Ord

e Displaying as a string

— Show



Information about overloading

By typing “ :i T “ to GHCI you can find out
details of about the “T” kind of overloading.

For example

:i Show

1 Num



Example: Num

*ProgrammingOutLoud> -1 Num
class (Eq a, Show a) => Num a where

(+) :: a->a ->a

(*) ::a->a->a

(-) ::a->a->a

negate :: a -> a

abs :: a -> a

sighum -: a -> a

fromInteger :-: Integer -> a

-— Defined 1n GHC.Num

instance Num Int -- Defined 1n GHC.Num
instance Num Integer -- Defined in GHC.Num
instance Num Double -- Defined i1n GHC.Float

instance Num Float -- Defined 1n GHC.Float



Integer

e Constants like 5, 35, 897 are in the Num class

 They default to the type Integer



Double

e Constants like 5.6, and 0.0 are Fractional

 These default to the type Double



Type declarations

e |f you have a problem with a numeric constant
like 5 or 78.9, you will probably see an error
that mentions Num or Fractional.

* Fix these by adding type declarations



	Using Types
	Expressions Have Types:
	Type Errors:
	Pairs:
	Operating on Pairs:
	Lists:
	Overloading
	One way to get these is overloading
	Information about overloading
	Example: Num
	Integer
	Double
	Type declarations

