
Using Types

Slides thanks to Mark Jones

2

Expressions Have Types:

• The type of an expression tells you what kind of
value you might expect to see if you evaluate that
expression

• In Haskell, read “::” as “has type”

• Examples:
– 1 :: Int, 'a' :: Char, True :: Bool, 1.2 :: Float, …

• You can even ask GHCI for the type of an

expression: :t expr

3

Type Errors:
Prelude> 'a' && True

<interactive>:26:1:
 Couldn't match expected type `Bool' with actual type

`Char'
 In the first argument of `(&&)', namely 'a'
 In the expression: 'a' && True
 In an equation for `it': it = 'a' && True

Prelude> odd 1 + 2

<interactive>:29:7:
 No instance for (Num Bool)
 arising from a use of `+'
 Possible fix: add an instance declaration for (Num Bool)
 In the expression: odd 1 + 2
 In an equation for `it': it = odd 1 + 2

4

Pairs:

• A pair packages two values into one
 (1, 2) ('a', 'z') (True, False)

• Components can have different types
 (1, 'z') ('a', False) (True, 2)

• The type of a pair whose first component is of type

A and second component is of type B is written
(A,B)

• What are the types of the pairs above?

5

Operating on Pairs:

• There are built-in functions for extracting the
first and second component of a pair:

– fst (True, 2) = True
–snd (0, 7) = 7

• Is the following property true?

For any pair p, (fst p, snd p) = p

6

Lists:

• Lists can be used to store zero or more elements, in
sequence, in a single value:
[] [1, 2, 3] ['a', 'z'] [True, True, False]

• All of the elements in a list must have the same

type
• The type of a list whose elements are of type A is

written as [A]
• What are the types of the lists above?

Overloading

• Some expressions can have more than one
type

• Examples
– 23
– []
– f x = x < 3
– f x = show x ++ “ is the answer”

One way to get these is overloading

• Three important causes of overloading

• Numbers
– Num

• Comparisons
– Ord

• Displaying as a string
– Show

Information about overloading

• By typing “ :i T “ to GHCI you can find out
details of about the “T” kind of overloading.

• For example

• :i Show
• :i Num

Example: Num
*ProgrammingOutLoud> :i Num

class (Eq a, Show a) => Num a where

 (+) :: a -> a -> a

 (*) :: a -> a -> a

 (-) :: a -> a -> a

 negate :: a -> a

 abs :: a -> a

 signum :: a -> a

 fromInteger :: Integer -> a

 -- Defined in GHC.Num

instance Num Int -- Defined in GHC.Num

instance Num Integer -- Defined in GHC.Num

instance Num Double -- Defined in GHC.Float

instance Num Float -- Defined in GHC.Float

Integer

• Constants like 5, 35, 897 are in the Num class

• They default to the type Integer

Double

• Constants like 5.6, and 0.0 are Fractional

• These default to the type Double

Type declarations

• If you have a problem with a numeric constant
like 5 or 78.9, you will probably see an error
that mentions Num or Fractional.

• Fix these by adding type declarations

	Using Types
	Expressions Have Types:
	Type Errors:
	Pairs:
	Operating on Pairs:
	Lists:
	Overloading
	One way to get these is overloading
	Information about overloading
	Example: Num
	Integer
	Double
	Type declarations

