CS 457/557: Functional Languages

From Trees to Type Classes

Mark P Jones
Portland State University
Trees:

- There are many kinds of tree data structure.
- For example:

```haskell
data BinTree a = Leaf a
  | BinTree a :+: BinTree a

deriving Show
```

- The “deriving Show” part makes it possible for us to print out tree values ...
Definition:

```
example :: BinTree Int
example = l ^: r
  where l = p ^: q
    r = s ^: t
    p = Leaf 1 :^: t
    q = s ^: Leaf 2
    s = Leaf 3 :^: Leaf 4
    t = Leaf 5 :^: Leaf 6
```

At the prompt:

```
Main> example
Main>
```
Wouldn’t it be nice ...

If we could view these trees in a graphical form
Mapping on Trees:

- We can define a mapping operation on trees:

 \[
 \text{mapTree} :: (a \to b) \to \text{BinTree } a \to \text{BinTree } b
 \]

 \[
 \text{mapTree } f \; (\text{Leaf } x) = \text{Leaf } (f \; x)
 \]

 \[
 \text{mapTree } f \; (l :^:\top : r) = \text{mapTree } f \; l :^:\top : \text{mapTree } f \; r
 \]

- This is an analog of the map function on lists; it applies the function \(f \) to each leaf value stored in the tree.
Example: convert every leaf value into a string:

```haskell
Main> mapTree show example
((Leaf "1" :^: (Leaf "5" :^: Leaf "6")) :^: ((Leaf "3" :^: Leaf "4") :^: Leaf "2")) :^: ((Leaf "3" :^: Leaf "4") :^: (Leaf "5" :^: Leaf "6"))
Main>
```

Example: add one to every leaf value:

```haskell
Main> mapTree (1+) example
Main>
```

Still not very pretty ...
Visualizing the Results:

If we could view these trees in a graphical form ...
Visualizing the Results:

If we could view these trees in a graphical form ...
Visualizing the Results:

... we could see that `mapTree` preserves shape

Gives insight to the laws:

\[
\text{mapTree id} = \text{id} \\
\text{mapTree } (f \cdot g) = \text{mapTree } f \cdot \text{mapTree } g
\]
Graphviz & Dot:

- Graphviz is a set of tools for visualizing graph and tree structures.

- Dot is the language that Graphviz uses for describing the tree/graph structures to be visualized.

Usage: `dot -Tpng file.dot > file.png`
Example:

To describe (Leaf "a" :^: Leaf "b" :^: Leaf "c"):

```plaintext
digraph tree {
    "1" [label=""];
    "1" -> "2";
    "2" [label=""];
    "2" -> "3";
    "3" [label="a"];  
    "2" -> "4";
    "4" [label="b"];  
    "1" -> "5";
    "5" [label="c"];  
}
```

General Form:

A dot file contains a description of the form
digraph name { stmts } where each stmt is either

- `node_id [label="text"]`;
 constructs a node with the specified id and label.

- `node_id -> node_id`;
 constructs an edge between the specified pair of nodes.

[Actually, there are many more options than this!]
From BinTree to dot:

How can we convert a BinTree value into a dot file?

For simplicity, assume a BinTree String input.

Labels:
- Label leaf nodes with the corresponding strings
- Label internal nodes with the empty string

Node ids:
- What should we use for node ids?
Paths:

Every node can be identified by a unique path:
- The root node of a tree has path \([]\)
- The n^{th} child of a node with path p has path $(n:p)$

```haskell
type Path      = [Int]
type NodeId    = String

showPath :: Path -> NodeId
showPath p   = "\"" ++ show p ++ "\""
```

Add "quotes" to avoid confusing Graphviz tools
Example:
Actual dot code:

To describe \((\text{Leaf } "a" :^\wedge : \text{Leaf } "b" :^\wedge : \text{Leaf } "c")\):

digraph tree {
 "[]" [label=""];
 "[]" -> "[1]";
 "[1]" [label=""];
 "[1]" -> "[1,1]";
 "[1,1]" [label="a"];
 "[1]" -> "[2,1]";
 "[2,1]" [label="b"];
 "[]" -> "[2]";
 "[2]" [label="c"];
}

Capturing “Tree”-ness:

subtrees :: BinTree a -> [BinTree a]
subtrees (Leaf x) = []
subtrees (l :^: r) = [l, r]

nodeLabel :: BinTree String -> String
nodeLabel (Leaf x) = x
nodeLabel (l :^: r) = ""
Trees -> dot Statements:

```haskell
nodeTree :: Path -> BinTree String -> [String]
nodeTree p t
  = [ showPath p ++ " [label=" ++ nodeLabel t ++ "]" ]
     ++ concat (zipWith (edgeTree p) [1..] (subtrees t))
```

```haskell
edgeTree :: Path -> Int -> BinTree String -> [String]
edgeTree p n c
  = [ showPath p ++ " -> " ++ showPath p' ]
     ++ nodeTree p' c
  where p' = n : p
```
A Top-level Converter:

toDot :: BinTree String -> IO ()
toDot t = writeFile "tree.dot"
 ("digraph tree {\n ++ semi (nodeTree [] t)
 ++ "}\n"
 where semi = foldr (\l ls -> l ++ ";\n" ++ ls) ""

Now we can generate dot code for our example tree:

Main> toDot (mapTree show example)

Main> !dot -Tpng tree.dot > ex.png

Main>
What About Other Tree Types?

data LabTree l a = Tip a
 | LFork l (LabTree l a) (LabTree l a)

data STree a = Empty
 | Split a (STree a) (STree a)

data RoseTree a = Node a [RoseTree a]

data Expr = Var String
 | IntLit Int
 | Plus Expr Expr
 | Mult Expr Expr

Can I also visualize these using Graphviz?
Higher-Order Functions:

Essential tree structure is captured using the
subtrees and nodeLabel functions.

What if we abstract these out as parameters?

nodeTree' :: (t -> String) ->
 (t -> [t]) ->
 Path -> t -> [String]

edgeTree' :: (t -> String) ->
 (t -> [t]) ->
 Path -> Int -> t -> [String]
Adding the Parameters:

```haskell
nodeTree' lab sub p t
  = [ showPath p ++ " [label="" ++ lab t ++ "]"
  ++ concat (zipWith (edgeTree' lab sub p) [1..] (sub t)) ]

edgeTree' lab sub p n c
  = [ showPath p ++ " -> " ++ showPath p' ]
  ++ nodeTree' lab sub p' c
  where p' = n : p

toDouble' :: (t -> String) -> (t -> [t]) -> t -> IO ()
toDouble' lab sub t
  = writeFile "tree.dot"
    ("digraph tree {
    " ++ semi (nodeTree' lab sub [] t) ++ "}\n"
  where semi = foldr (\l ls -> l ++ "};\n" ++ ls) ""
```

22
Alternative (Local Definitions):

```haskell
toDot'' :: (t -> String) -> (t -> [t]) -> t -> IO ()
toDot'' lab sub t
    = writeFile "tree.dot"
        ("digraph tree {
        n
        "+ semi (nodeTree' [] t) ++ "}
        )

where

semi = foldr (\l ls -> l ++ ";\n" ++ ls) ""

nodeTree' p t
    = [ showPath p ++ " [label=" ++ lab t ++ "]"
        ] ++ concat (zipWith (edgeTree' p) [1..] (sub t))

edgeTree' p n c
    = [ showPath p ++ " -> " ++ showPath p' ] ++ nodeTree' p' c
    where p' = n : p
```

23
Specializing to Tree Types:

```haskell
toDotBinTree = toDot' lab sub
  where lab (Leaf x) = x
        lab (l ^: r) = ""
        sub (Leaf x) = []
        sub (l ^: r) = [l, r]

toDotLabTree = toDot' lab sub
  where lab (Tip a) = a
        lab (LFSink s l r) = s
        sub (Tip a) = []
        sub (LFSink s l r) = [l, r]

toDotRoseTree = toDot' lab sub
  where lab (Node x cs) = x
        sub (Node x cs) = cs
```
... continued:

toDotSTree = toDot' lab sub

 where lab Empty = ""
 lab (Split s l r) = s
 sub Empty = []
 sub (Split s l r) = [l, r]

toDotExpr = toDot' lab sub

 where lab (Var s) = s
 lab (IntLit n) = show n
 lab (Plus l r) = "+
 lab (Mult l r) = "*
 sub (Var s) = []
 sub (IntLit n) = []
 sub (Plus l r) = [l, r]
 sub (Mult l r) = [l, r]
Example:

toDotRoseTree

(Node "a" [Node "b" [],
 Node "c" [],
 Node "d" [Node "e" []]])
Example:

toDotExpr (Plus (Mult (Var "x") (IntLit 3)) (Mult (Var "y") (IntLit 5)))
Good and Bad:

Good:
- It works!
- It is general (applies to multiple tree types)
- It provides some reuse
- It reveals important role for `subtrees/labelNode`

Bad:
- It’s ugly and verbose
- For any given tree type, there’s really only one sensible way to define the `subtrees` function ...
Type Classes:

What distinguishes "tree types" from other types?

a value of a tree type can have zero or more subtrees

And, for any given tree type, there's really only one sensible way to do this.

```
class Tree t where
  subtrees :: t -> [t]
```
For Instance(s):

instance Tree (BinTree a) where
 subtrees (Leaf x) = []
 subtrees (l :^: r) = [l, r]

instance Tree (LabTree l a) where
 subtrees (Tip a) = []
 subtrees (Lfork s l r) = [l, r]

instance Tree (STree a) where
 subtrees Empty = []
 subtrees (Split s l r) = [l, r]
... continued:

```haskell
instance Tree (RoseTree a) where
    subtrees (Node x cs) = cs

instance Tree Expr where
    subtrees (Var s) = []
    subtrees (IntLit n) = []
    subtrees (Plus l r) = [l, r]
    subtrees (Mult l r) = [l, r]
```

So What?
Generic Operations on Trees:

\[
\text{depth} :: \text{Tree } t \Rightarrow t \rightarrow \text{Int} \\
\text{depth} = (1+) \cdot \text{foldl} \max 0 \cdot \text{map} \text{ depth} \cdot \text{subtrees}
\]

\[
\text{size} :: \text{Tree } t \Rightarrow t \rightarrow \text{Int} \\
\text{size} = (1+) \cdot \text{sum} \cdot \text{map} \text{ size} \cdot \text{subtrees}
\]

\[
\text{paths} :: \text{Tree } t \Rightarrow t \rightarrow [[t]] \\
\text{paths } t \mid \text{null } \text{br} = [[t]] \\
| \text{otherwise} = [\text{t:p} \mid \text{b} \leftarrow \text{br}, \text{p} \leftarrow \text{paths } \text{b}]
\]

\[
\text{dfs} :: \text{Tree } t \Rightarrow t \rightarrow [t] \\
\text{dfs } t = t : \text{concat} \ (\text{map} \text{ dfs} \ (\text{subtrees } t))
\]

Tree \(t \Rightarrow \) means “any type \(t \), so long as it is a Tree type …” (i.e., so long as it has a \text{subtrees} \ function)
Implicit Parameterization:

- An operation with a type \(\text{Tree } t \Rightarrow \ldots \) is implicitly parameterized by the definition of a \text{subtrees} function of type \(t \Rightarrow [t] \)

- (The implementation doesn’t have to work this way ...)

- Because there is at most one such function for any given type \(t \), there is no need for us to write the \text{subtrees} parameter explicitly

- That’s good because it can mean less clutter, more clarity
Labeled Trees:

- To be able to convert trees into dot format, we need the nodes to be labeled with strings.

- Not all trees are labeled in this way, so we create a subclass

  ```
  class Tree t => LabeledTree t where
  label :: t -> String
  ```

- (Is this an appropriate use of overloading?)
LabeledTree Instances:

instance LabeledTree (BinTree String) where
 label (Leaf x) = x
 label (l :^: r) = ""

instance LabeledTree (LabTree String String) where
 label (Tip a) = a
 label (LFork s l r) = s

instance LabeledTree (STree String) where
 label Empty = ""
 label (Split s l r) = s

Needs hugs -98, for example
instance LabeledTree (RoseTree String) where
 label (Node x cs) = x

instance LabeledTree Expr where
 label (Var s) = s
 label (IntLit n) = show n
 label (Plus l r) = "+
 label (Mult l r) = "*"
Generic Tree -> dot:

toDot :: LabeledTree t => t -> IO ()
toDot t = writeFile "tree.dot"
 ("digraph tree {
 nodeTree [] t ++ "}

 where semi = foldr (\l ls -> l ++ ";
 nodeTree :: LabeledTree t => Path -> t -> [String]
 nodeTree p t
 = [showPath p ++ " [label=" ++ label t ++ "]"]
 ++ concat (zipWith (edgeTree p) [1..] (subtrees t))

 edgeTree :: LabeledTree t => Path -> Int -> t -> [String]
 edgeTree p n c = [showPath p ++ " -> " ++ showPath p']
 ++ nodeTree p' c
 where p' = n : p
Example:

toDot (Node "a" [Node "b" [],
 Node "c" [],
 Node "d" [Node "e" []]])
Example:

```
toDouble (Plus (Mult (Var "x") (IntLit 3))
            (Mult (Var "y") (IntLit 5)))
```
Example:

Main> toDot example
ERROR - Unresolved overloading
*** Type : LabeledTree (BinTree Int) => IO ()
*** Expression : toDot example

Main>

We need trees labeled with strings ...
Example:

```haskell
Main> toDot example
ERROR - Unresolved overloading
*** Type : LabeledTree (BinTree Int) => IO ()
*** Expression : toDot example

Main> toDot (mapTree show example)

mapTree :: (a -> b) -> BinTree a -> BinTree b
mapTree f (Leaf x) = Leaf (f x)
mapTree f (l :+: r) = mapTree f l :+: mapTree f r
```
The Functor Class:

class Functor f where
 fmap :: (a -> b) -> f a -> f b

instance Functor [] where ...
instance Functor Maybe where ...

-- fmap id == id
-- fmap (f . g) == fmap f . fmap g
Tree Instances:

instance Functor BinTree where
 fmap f (Leaf x) = Leaf (f x)
 fmap f (l :^: r) = fmap f l :^: fmap f r

instance Functor (LabTree l) where
 fmap f (Tip a) = Tip (f a)
 fmap f (LFork s l r) = LFork s (fmap f l) (fmap f r)

instance Functor STree where
 fmap f Empty = Empty
 fmap f (Split s l r) = Split (f s) (fmap f l) (fmap f r)

instance Functor RoseTree where
 fmap f (Node x cs) = Node (f x) (map (fmap f) cs)

Why no instance for Expr?
Example:

Main> toDot (fmap show (example :^: example))

Main> depth (example :^: example)
6
Main>
Type Classes:

- We’ve been exploring one of the most novel features that was introduced in the design of Haskell.

- Similar ideas are now filtering in to other popular languages (e.g., “concepts” in C++).

- We’ll spend the rest of our time in this lecture looking at the original motivation for type classes.
Between One and All:

- Haskell allows us to define (monomorphic) functions that have just one possible instantiation:

 \[
 \text{not} :: \text{Bool} \rightarrow \text{Bool}
 \]

- And (polymorphic) functions that work for all instantiations:

 \[
 \text{id} :: a \rightarrow a
 \]

- But not all functions fit comfortably into these two categories ...
Addition:

What type should we use for the addition operator (+)?

Picking a monomorphic type like
\[
\text{Int} \rightarrow \text{Int} \rightarrow \text{Int}
\]
is too limiting, because this can’t be applied to other numeric types

Picking a polymorphic type like
\[
\text{a} \rightarrow \text{a} \rightarrow \text{a}
\]
is too general, because addition only works for “numeric types” ...
Equality:

- What type should we use for the equality operator (==)?

- Picking a monomorphic type like `Int -> Int -> Bool` is too limiting, because this can’t be applied to other numeric types.

- Picking a polymorphic type like `a -> a -> Bool` is too general, because there is no computable equality on function types ...
Numeric Literals:

- What type should we use for the type of the numeric literal 0?

- Picking a monomorphic type like Int is too limiting, because then it can’t be used for other numeric types
 - And functions like \texttt{sum = foldl (\texttt{+}) 0} inherit the same restriction and can only be used on limited types

- Picking a polymorphic type like a is too general, because there is no meaningful interpretation for zero at all types ...
Workarounds (1):

- We could use different names for the different versions of an operator at different types:
 -
 - (+) :: Int -> Int -> Int
 - (+') :: Float -> Float -> Float
 - (+") :: Integer -> Integer -> Integer
 - ...

- Apart from the fact that this is really ugly, it prevents us from defining general functions that use addition (again, \(\text{sum} = \text{foldl} \ (+) \ 0 \))
Workarounds (2):

We could just define the “unsupported” cases with dummy values.

- 0 :: Int produces an integer zero
- 0 :: Float produces a floating point zero
- 0 :: Int -> Bool produces some undefined value (e.g., sends the program into an infinite loop)

Attitude: “More fool you, programmer, for using zero with an inappropriate type!”
Workarounds (3):

- We could inspect the values of arguments that are passed in to each function to determine which interpretation is required.

- Works for (+) and (==) (although still requires that we assign a polymorphic type, so those problems remain)

- But it won’t work for 0. There are no arguments here from which to infer the type of zero that is required; that information can only be determined from the context in which it is used.
Workarounds (4):

- Miranda and Orwell (two predecessors of Haskell) included a type called “`Num`” that included both floating point numbers and integers in the same type

  ```haskell
  data Num = In Integer | Fl Float
  ```

- Now `(+)` can be treated as a function of type `Num -> Num -> Num` and applied to either integers or floats, or even mixed argument types.

- But we’ve lost a lot: types don’t tell us as much, and basic arithmetic operations are more expensive to implement ...
Between a rock ...

- In these examples, monomorphic types are too restrictive, but polymorphic types are too general.

- In designing the language, the Haskell Committee had planned to take a fairly conservative approach, consolidating the good ideas from other languages that were in use at the time.

- But the existing languages used a range of awkward and ad-hoc techniques and nobody had a good, general solution to this problem ...
“How to make ad-hoc polymorphism less ad-hoc”

- In 1989, Philip Wadler and Stephen Blott proposed an elegant, general solution to these problems

- Their approach was to introduce a way of talking about sets of types ("Type Classes") and their elements ("Instances")

- The Haskell committee decided to incorporate this innocent and attractive idea into the first version of Haskell ...
Type Classes:

- A **type class** is a set of types
- Haskell provides several built-in type classes, including:
 - **Eq**: types whose elements can be compared for equality
 - **Num**: numeric types
 - **Show**: types whose values can be printed as strings
 - **Integral**: types corresponding to integer values,
 - **Enum**: types whose values can be enumerated (and hence used in `[m..n]` notation)
A (Not-Well Kept) Secret:

- Users can define their own type classes
- This can sometimes be very useful
- It can also be abused
- For now, we’ll just focus on understanding and using the built-in type classes ...
Instances:

- The elements of a type class are known as the instances of the class.

- If C is a class and t is a type, then we write $C \; t$ to indicate that t is an element-instance of C.

- (Maybe we should have used $t \in C$, but the \in symbol wasn’t available in the character sets or on the keyboards of last century’s computers... :-))
Instance Declarations:

The instances of a class are specified by a collection of instance declarations:

```haskell
instance Eq Int
instance Eq Integer
instance Eq Float
instance Eq Double
instance Eq Bool
instance Eq a => Eq [a]
instance Eq a => Eq (Maybe a)
instance (Eq a, Eq b) => Eq (a,b)
...
```
... continued:

In set notation, this is equivalent to saying that:

\[\text{Eq} = \{ \text{Int, Integer, Float, Double, Bool} \} \]
\[\cup \{ [t] \mid t \in \text{Eq} \} \]
\[\cup \{ \text{Maybe t} \mid t \in \text{Eq} \} \]
\[\cup \{ (t_1, t_2) \mid t_1 \in \text{Eq}, t_2 \in \text{Eq} \} \]

Eq is an infinite set of types, but it doesn’t include all types (e.g., types like \text{Int} \to \text{Int} and [[\text{Int}] \to \text{Bool}] are not included)
Derived Instances (1):

- The prelude provides a number of types with instance declarations that include those types in the appropriate classes.

- Classes can also be extended with definitions for new types by using a deriving clause:

  ```hs
  data T = ... deriving Show
  data S = ... deriving (Show, Ord, Eq)
  ```

- The compiler will check that the types are appropriate to be included in the specified classes.
The prelude also provides a range of functions, with restricted polymorphic types:

- `(==)` :: `Eq a => a -> a -> Bool`
- `+` :: `Num a => a -> a -> a`
- `min` :: `Ord a => a -> a -> a`
- `show` :: `Show a => a -> String`
- `fromInteger` :: `Num a => Integer -> a`

A type of the form `C a => T(a)` represents all types of the form `T(t)` for any type `t` that is an instance of the class `C`
Terminology:

- An expression of the form $C \ t$ is often referred to as a constraint, a class constraint, or a predicate.

- A type of the form $C \ t \Rightarrow \ldots$ is often referred to as a restricted type or as a qualified type.

- A collection of predicates $(C \ t, D \ t', \ldots)$ is often referred to as a context. The parentheses can be dropped if there is only one element.
Type Inference:

Type Inference works just as before, except that now we also track constraints.

Example: \textbf{null} \textit{xs} = (\textit{xs} == [])

- Assume \textit{xs} :: \textit{a}
- Pick \texttt{(==)} :: \textit{b} \to \textit{b} \to \text{Bool} with the constraint \texttt{Eq \textit{b}}
- Pick instance \texttt{[]} :: \texttt{[c]}
- From \texttt{(xs == [])}, we infer \textit{a} = \textit{b} = \texttt{[c]}, with result type of \text{Bool}
- Thus: \textit{null} :: \texttt{Eq [c] => [c] -> Bool}
 \textit{null} :: \texttt{Eq \textit{c} => [c] -> Bool}
Note: In this case, it would probably be better to use the following definition:

```haskell
null :: [a] -> Bool
null [] = True
null (x:xs) = False
```

The type `[a] -> Bool` is more general than `Eq a => [a] -> Bool`, because the latter only works with “equality types”
Examples:

- We can treat the integer literal 0 as sugar for \(\text{fromInteger 0} \), and hence use this as a value of any numeric type.
 - Strictly speaking, its type is \(\text{Num a => a} \), which means any type, so long as it’s numeric ...

- We can use \((==) \) on integers, booleans, floats, or lists of any of these types ... but not on function types.

- We can use \((+) \) on integers or on floating point numbers, but not on Booleans.
Inheriting Predicates:

- Predicates in the type of a function f can "infect" the type of a function that calls f.

The functions:

- $\text{member } xs \ x = \text{any } (x==)\ xs$
- $\text{subset } xs \ ys = \text{all } (\text{member } ys)\ xs$

have types:

- $\text{member} :: \text{Eq} \ a \Rightarrow [a] \rightarrow a \rightarrow \text{Bool}$
- $\text{subset} :: \text{Eq} \ a \Rightarrow [a] \rightarrow [a] \rightarrow \text{Bool}$
... continued:

- For example, now we can define:

  ```haskell
  data Day = Sun|Mon|Tue|Wed|Thu|Fri|Sat
  deriving (Eq, Show)
  ```

- And then apply `member` and `subset` to this new type:

  ```haskell
  Main> member [Mon,Tue,Wed,Thu,Fri] Wed
  True
  
  Main> subset [Mon,Sun] [Mon,Tue,Wed,Thu,Fri]
  False
  ```
Eliminating Predicates:

- Predicates can be eliminated when they are known to hold.

- Given the standard prelude function:

 \[
 \text{sum} :: \text{Num } a \Rightarrow [a] \rightarrow a
 \]

 and a definition

 \[
 \text{gauss} = \text{sum} \ [1..10::\text{Integer}]
 \]

 we could infer a type

 \[
 \text{gauss} :: \text{Num Integer} \Rightarrow \text{Integer}
 \]

 But then simplify this to

 \[
 \text{gauss} :: \text{Integer}
 \]
Detecting Errors:

Errors can be raised when predicates are known not to hold:

Prelude> 'a' + 1
ERROR - Cannot infer instance
*** Instance : Num Char
*** Expression : 'a' + 1

Prelude> (\x -> x)
ERROR - Cannot find "show" function for:
*** Expression : \x -> x
*** Of type : a -> a
Derived Instances (2):

What if you define a new type and you can’t use a derived instance?
- Example: `data Set a = Set [a] deriving Num`
- What does it mean to do arithmetic on sets?
- How could the compiler figure this out from the definition above?

What if you define a new type and the derived equality is not what you want?
- Example: `data Set a = Set [a]`
- We’d like to think of `Set [1,2]` and `Set [2,1]` and `Set [1,1,1,2,2,1,2]` as equivalent sets
Example: Derived Equality

The derived equality for Set gives us:
\[\text{Set } xs == \text{Set } ys = xs == ys \]

And the equality on lists gives us:
\[
\begin{align*}
[] & == [] = \text{True} \\
(x:xs) & == (y:ys) = (x==y) \&\& (xs==ys) \\
_ & == _ = \text{False}
\end{align*}
\]

A derived equality function tests for structural equality ... what we need for \textbf{Set} is not a structural equality
Class Declarations:

Before we can define an instance, we need to look at the class declaration:

```
class Eq a where
  (==), (/=) :: a -> a -> Bool

-- Minimal complete definition: (==) or (/=)
  x == y       = not (x/=y)
  x /= y       = not (x==y)
```

To define an instance of equality, we will need to provide an implementation for at least one of the operators (==) or (/=)
Member Functions:

- In a class declaration
  ```haskell
class C a where
  f, g, h :: T(a)
  ```

- Member functions receive types of the form
  ```haskell
  f, g, h :: C a => T(a)
  ```

- From a user’s perspective, just like any other type qualified by a predicate

- From an implementer’s perspective, these are the operations that we have to code to define an instance
Instance Declarations:

- We can define a non-structural equality on the Set datatype using the following:

  ```haskell
  instance Eq a => Eq (Set a) where
      Set xs == Set ys
          = (xs `subset` ys) && (ys `subset` xs)
  ```

- This works as we’d like ...

```haskell
Main> Set [1,1,1,2,2,1,2] == Set [1,2]
True
Main> Set [1,2] == Set [3,4]
False
Main> Set [2,1] == Set [1,1,1,2,2,1,2]
True
Main>
```
Overloading:

- Type classes support the definition of overloaded functions.

- “Overloading”, because a single identifier can be overloaded with multiple interpretations.

- But just because you can ... it doesn’t mean you should!

- Use judiciously, where appropriate, where there is a coherent, unifying view of each overloaded function should do.
Defining New Classes:

- **Can I define new type classes in my program or library?**
 - Yes!

- **Should I define new type classes in my program or library?**
 - Yes, if it makes sense to do so!
 - What common properties would the instances to share, and how should this be reflected in the choice of the operators?
 - Does it make sense for the meaning of a symbol to be uniquely determined by the types of the values that are involved?
Beware of Ambiguity!

What if there isn’t enough information to resolve overloading?

- Early versions of Hugs would report an error if you tried to evaluate `show []`
- The system infers a type `Show a => String`, and doesn’t know what type to pick for the “ambiguous” variable `a`
- (It could make a difference: `show ([]::[Int]) = "[]"`, but `show ([]::[Char]) = "\"\""`)
- Recent versions use defaulting to pick a default choice ... but the results there are also less than ideal ...
Summary:

- Type classes provide a way to describe sets of types and related families of operations that are defined on their instances.
- A range of useful type classes are built-in to the prelude.
- Classes can be extended by deriving new instances or defining your own.
- New classes can also be defined.
- Once you’ve experienced programming with type classes, it’s hard to go without ...