
Cse536 Functional Programming

1 1/21/2015

Trees
•Today’s Topics

– Trees
– Kinds of trees - branching factor
–functions over trees
–patterns of recursion - the fold for trees
–Arithmetic expressions
–Infinite trees

Cse536 Functional Programming

2 1/21/2015

Trees
• Trees are important data structures in computer

science
• Trees have interesting properties

– They usually are finite, but unbounded in size
– Sometimes contain other types inside
– Sometimes the things contained are polymorphic
– differing “branching factors”
– different kinds of leaf and branching nodes

• Lots of interesting things can be modeled by trees
– lists (linear branching)
– arithmetic expressions
– parse trees (for languages)

• In a lazy language it is possible to have infinite trees

Cse536 Functional Programming

3 1/21/2015

Examples
data List a = Nil | MkList a (List a)

data Tree a = Leaf a | Branch (Tree a) (Tree a)

data IntegerTree = IntLeaf Integer
 | IntBranch IntegerTree IntegerTree

data SimpleTree = SLeaf
 | SBranch SimpleTree SimpleTree

data InternalTree a = ILeaf
 | IBranch a (InternalTree a)
 (InternalTree a)

data FancyTree a b = FLeaf a
 | FBranch b (FancyTree a b)
 (FancyTree a b)

Cse536 Functional Programming

4 1/21/2015

Match up the trees
• IntegerTree

• Tree

• SimpleTree

• List

• InternalTree

• FancyTree

A B

A

B C

2

6 9

A

B

A

B
i

j k

Cse536 Functional Programming

5 1/21/2015

Functions on Trees
• Transforming one kind of tree into another

mapTree :: (a->b) -> Tree a -> Tree b
mapTree f (Leaf x) = Leaf (f x)
mapTree f (Branch t1 t2) = Branch (mapTree f t1)
 (mapTree f t2)

• Collecting the items in a tree

fringe :: Tree a -> [a]
fringe (Leaf x) = [x]
fringe (Branch t1 t2) = fringe t1 ++ fringe t2

• what kind of information is lost using fringe?

Cse536 Functional Programming

6 1/21/2015

More functions

treeSize :: Tree a -> Integer
treeSize (Leaf x) = 1
treeSize (Branch t1 t2) = treeSize t1 + treeSize t2

treeHeight :: Tree a -> Integer
treeHeight (Leaf x) = 0
treeHeight (Branch t1 t2) = 1 + max (treeHeight t1)
 (treeHeight t2)

Cse536 Functional Programming

7 1/21/2015

Capture the pattern of recursion

foldTree :: (a -> a -> a) -> (b -> a) -> Tree b -> a
foldTree bf lf (Leaf x) = lf x
foldTree bf lf (Branch t1 t2) =
 bf (foldTree bf lf t1) (foldTree bf lf t2)

mapTree2 f = foldTree Branch (Leaf . f)

fringe2 = foldTree (++) (\ x -> [x])

treeSize2 = foldTree (+) (const 1)

treeHeight2 = foldTree (\ x y -> 1 + max x y)
 (const 0)

Cse536 Functional Programming

8 1/21/2015

Flattening Trees
data Tree a
 = Leaf a | Branch (Tree a) (Tree a)

flatten :: Tree a -> [a]
flatten (Leaf x) = [x]
flatten (Branch x y) = flatten x ++ flatten y

What is the complexity of flattening a deep fully
filled out tree?

Cse536 Functional Programming

9 1/21/2015

Flattening with accumulating parameter
data Tree a
 = Leaf a | Branch (Tree a) (Tree a)

flatten :: Tree a -> [a]
flatten t = flat t []

flat (Leaf x) xs = x:xs
flat (Branch a b) xs = flat a (flat b xs)

Cse536 Functional Programming

10 1/21/2015

Arithmetic Expressons
data Expr2 = C2 Float
 | Add2 Expr2 Expr2
 | Sub2 Expr2 Expr2
 | Mul2 Expr2 Expr2
 | Div2 Expr2 Expr2

• using infix constructor functions

data Expr = C Float
 | Expr :+ Expr
 | Expr :- Expr
 | Expr :* Expr
 | Expr :/ Expr

Infix constructor operators start
with a colon (:) , just like

constructor functions start with
an upper case letter

Cse536 Functional Programming

11 1/21/2015

Example uses

e1 = (C 10 :+ (C 8 :/ C 2)) :* (C 7 :- C 4)

evaluate :: Expr -> Float
evaluate (C x) = x
evaluate (e1 :+ e2) = evaluate e1 + evaluate e2
evaluate (e1 :- e2) = evaluate e1 - evaluate e2
evaluate (e1 :* e2) = evaluate e1 * evaluate e2
evaluate (e1 :/ e2) = evaluate e1 / evaluate e2

Main> evaluate e1
42.0

Cse536 Functional Programming

12 1/21/2015

Infinite Trees
• Can we make an Expr tree that represents the

infinite expression: 1 + 2 + 3 + 4 ….

sumFromN n = C n :+ (sumFromN (n+1))
sumAll = sumFromN 1

add1 (C n) = C (n+1)
add1 (x :+ y) = add1 x :+ add1 y
add1 (x :- y) = add1 x :- add1 y
add1 (x :* y) = add1 x :* add1 y
add1 (x :/ y) = add1 x :/ add1 y

sumAll2 = C 1 :+ (add1 sumAll2)

Cse536 Functional Programming

13 1/21/2015

Observing Infinite Trees
• We can observe an infinite tree by printing a finite

prefix of it. We need a take-like function for trees.

showE 0 _ = "..."
showE n (C m) = show m
showE n (x :+ y) = "(" ++ (showE (n-1) x) ++ "+"
 ++ (showE (n-1) y) ++ ")"

Main> showE 5 sumAll2
"(1.0+(2.0+(3.0+(4.0+(...+...)))))"

Main> showE 5 sumAll
"(1.0+(2.0+(3.0+(4.0+(...+...)))))"

	Trees
	Trees
	Examples
	Match up the trees
	Functions on Trees
	More functions
	Capture the pattern of recursion
	Flattening Trees
	Flattening with accumulating parameter
	Arithmetic Expressons
	Example uses
	Infinite Trees
	Observing Infinite Trees

