Trees

• Today’s Topics
 – Trees
 – Kinds of trees - branching factor
 – functions over trees
 – patterns of recursion - the fold for trees
 – Arithmetic expressions
 – Infinite trees
Trees

- Trees are important data structures in computer science

- Trees have interesting properties
 - They usually are finite, but unbounded in size
 - Sometimes contain other types inside
 - Sometimes the things contained are polymorphic
 - differing “branching factors”
 - different kinds of leaf and branching nodes

- Lots of interesting things can be modeled by trees
 - lists (linear branching)
 - arithmetic expressions
 - parse trees (for languages)

- In a lazy language it is possible to have infinite trees
Examples

data List a = Nil | MkList a (List a)

data Tree a = Leaf a | Branch (Tree a) (Tree a)

data IntegerTree = IntLeaf Integer |
| IntBranch IntegerTree IntegerTree

data SimpleTree = SLeaf |
| SBranch SimpleTree SimpleTree

data InternalTree a = ILeaf |
| IBranch a (InternalTree a) (InternalTree a)

data FancyTree a b = FLeaf a |
| FBranch b (FancyTree a b) (FancyTree a b)
Match up the trees

- IntegerTree
- Tree
- SimpleTree
- List
- InternalTree
- FancyTree
Functions on Trees

• Transforming one kind of tree into another

mapTree :: (a->b) -> Tree a -> Tree b
mapTree f (Leaf x) = Leaf (f x)
mapTree f (Branch t1 t2) = Branch (mapTree f t1) (mapTree f t2)

• Collecting the items in a tree

fringe :: Tree a -> [a]
fringe (Leaf x) = [x]
fringe (Branch t1 t2) = fringe t1 ++ fringe t2

• what kind of information is lost using fringe?
More functions

treeSize :: Tree a -> Integer

\[
treeSize \ (\text{Leaf } x) = 1 \\
treeSize \ (\text{Branch } t1 \ t2) = \text{treeSize } t1 + \text{treeSize } t2
\]

treeHeight :: Tree a -> Integer

\[
treeHeight \ (\text{Leaf } x) = 0 \\
treeHeight \ (\text{Branch } t1 \ t2) = 1 + \max \ (\text{treeHeight } t1) \ (\text{treeHeight } t2)
\]
Capture the pattern of recursion

\[
foldTree :: (a \rightarrow a \rightarrow a) \rightarrow (b \rightarrow a) \rightarrow Tree b \rightarrow a
\]

\[
foldTree bf lf (Leaf x) = lf x
\]

\[
foldTree bf lf (Branch t1 t2) =
bf (foldTree bf lf t1) (foldTree bf lf t2)
\]

\[
mapTree2 f = foldTree Branch (Leaf . f)
\]

\[
fringe2 = foldTree (++) (\ x \rightarrow [x])
\]

\[
treeSize2 = foldTree (+) (const 1)
\]

\[
treeHeight2 = foldTree (\ x y \rightarrow 1 + \max x y) (const 0)
\]
Flattening Trees

data Tree a
 = Leaf a | Branch (Tree a) (Tree a)

flatten :: Tree a -> [a]
flatten (Leaf x) = [x]
flatten (Branch x y) = flatten x ++ flatten y

What is the complexity of flattening a deep fully filled out tree?
Flattening with accumulating parameter

```haskell
data Tree a
    = Leaf a | Branch (Tree a) (Tree a)

flatten :: Tree a -> [a]
flatten t = flat t []

flat (Leaf x) xs = x:xs
flat (Branch a b) xs = flat a (flat b xs)
```
Arithmetic Expressions

data Expr2 = C2 Float
 | Add2 Expr2 Expr2
 | Sub2 Expr2 Expr2
 | Mul2 Expr2 Expr2
 | Div2 Expr2 Expr2

• using infix constructor functions

data Expr = C Float
 | Expr :+: Expr
 | Expr :-: Expr
 | Expr :*: Expr
 | Expr :/: Expr

Infix constructor operators start with a colon (:) , just like constructor functions start with an upper case letter.
Example uses

e1 = (C 10 :+ (C 8 :/ C 2)) :* (C 7 :- C 4)

evaluate :: Expr -> Float
evaluate (C x) = x
evaluate (e1 :+: e2) = evaluate e1 + evaluate e2
evaluate (e1 :-: e2) = evaluate e1 - evaluate e2
evaluate (e1 :*: e2) = evaluate e1 * evaluate e2
evaluate (e1 :/: e2) = evaluate e1 / evaluate e2

Main> evaluate e1
42.0
Infinite Trees

- Can we make an Expr tree that represents the infinite expression: 1 + 2 + 3 + 4

\[
\text{sumFromN } n = C \ n \ :+ \ (\text{sumFromN } (n+1))
\]
\[
\text{sumAll} = \text{sumFromN} \ 1
\]

\[
\text{add1 } (C \ n) = C \ (n+1)
\]
\[
\text{add1 } (x \ :+ \ y) = \text{add1 } x \ :+ \ \text{add1 } y
\]
\[
\text{add1 } (x \ :- \ y) = \text{add1 } x \ :- \ \text{add1 } y
\]
\[
\text{add1 } (x \ :* \ y) = \text{add1 } x \ :* \ \text{add1 } y
\]
\[
\text{add1 } (x \ :/ \ y) = \text{add1 } x \ :/ \ \text{add1 } y
\]
\[
\text{sumAll2} = C \ 1 \ :+ \ (\text{add1 } \text{sumAll2})
\]
Observing Infinite Trees

• We can observe an infinite tree by printing a finite prefix of it. We need a `take-like` function for trees.

```haskell
showE 0 _ = "..."
showE n (C m) = show m
showE n (x :+: y) = "(" ++ (showE (n-1) x) ++ "+
  ++ (showE (n-1) y) ++ ")"
```

Main> showE 5 sumAll2
"(1.0+(2.0+(3.0+(4.0+(...+...)))))"

Main> showE 5 sumAll
"(1.0+(2.0+(3.0+(4.0+(...+...)))))"