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Trees 
•Today’s Topics 

– Trees 
– Kinds of trees - branching factor 
–functions over trees 
–patterns of recursion - the fold for trees 
–Arithmetic expressions 
–Infinite trees 
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Trees 
• Trees are important data structures in computer 

science 
• Trees have interesting properties 

– They usually are finite, but unbounded in size 
– Sometimes contain other types inside 
– Sometimes the things contained are polymorphic 
– differing “branching factors” 
– different kinds of leaf and branching nodes 

 

• Lots of interesting things can be modeled by trees 
– lists  (linear branching) 
– arithmetic expressions 
– parse trees (for languages) 

 

• In a lazy language it is possible to have infinite trees 
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Examples 
data List a = Nil | MkList a (List a) 

 

data Tree a = Leaf a | Branch  (Tree a) (Tree a) 
 

data IntegerTree = IntLeaf Integer  
                 | IntBranch IntegerTree IntegerTree 

 

data SimpleTree  = SLeaf  
                 | SBranch SimpleTree SimpleTree 

 

data InternalTree a = ILeaf  
                    | IBranch a (InternalTree a)  
                                (InternalTree a) 

 

data FancyTree a b =  FLeaf a  
                   | FBranch b (FancyTree a b) 
                               (FancyTree a b) 
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Match up the trees 
• IntegerTree 
 

 
• Tree   
    
   
• SimpleTree  

 
 

• List  
 
 

• InternalTree  
  

 
• FancyTree   
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Functions on Trees 
• Transforming one kind of tree into another 
 
mapTree :: (a->b) -> Tree a -> Tree b 
mapTree f (Leaf x)       = Leaf (f x) 
mapTree f (Branch t1 t2) = Branch (mapTree f t1)  
                                  (mapTree f t2) 
 

• Collecting the items in a tree 
 
fringe               :: Tree a -> [a] 
fringe (Leaf x)       = [x] 
fringe (Branch t1 t2) = fringe t1 ++ fringe t2 
 

• what kind of information is lost using fringe? 
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More functions 
 
treeSize               :: Tree a -> Integer 
treeSize (Leaf x)       = 1 
treeSize (Branch t1 t2) = treeSize t1 + treeSize t2 
 
 
treeHeight           :: Tree a -> Integer 
treeHeight (Leaf x)       = 0 
treeHeight (Branch t1 t2) = 1 + max (treeHeight t1)  
                                    (treeHeight t2) 
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Capture the pattern of recursion 
 
foldTree :: (a -> a -> a) -> (b -> a) -> Tree b -> a 
foldTree bf lf (Leaf x)       = lf x 
foldTree bf lf (Branch t1 t2) =  
     bf (foldTree bf lf t1) (foldTree bf lf t2) 
 
mapTree2 f = foldTree Branch (Leaf . f) 
 
fringe2 = foldTree (++) (\ x -> [x]) 
 
treeSize2 = foldTree (+) (const 1) 
 
treeHeight2 = foldTree (\ x y -> 1 + max x y) 
                       (const 0)  
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Flattening Trees 
data Tree a  
   = Leaf a | Branch  (Tree a) (Tree a) 
 
flatten :: Tree a -> [a] 
flatten (Leaf x) = [x] 
flatten (Branch x y) = flatten x ++ flatten y 
 

What is the complexity of flattening a deep fully 
filled out tree? 
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Flattening with accumulating parameter 
data Tree a  
   = Leaf a | Branch  (Tree a) (Tree a) 
 
flatten :: Tree a -> [a] 
flatten t = flat t [] 
 
flat (Leaf x) xs = x:xs 
flat (Branch a b) xs = flat a (flat b xs) 
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Arithmetic Expressons 
data Expr2 = C2 Float  
           | Add2 Expr2 Expr2  
           | Sub2 Expr2 Expr2 
           | Mul2 Expr2 Expr2  
           | Div2 Expr2 Expr2 
 

• using infix constructor functions 
 

data Expr = C Float  
          | Expr :+ Expr  
          | Expr :- Expr 
          | Expr :* Expr  
          | Expr :/ Expr   

Infix constructor operators start 
with a colon (:) ,  just like  

constructor functions start with  
an upper case letter 
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Example uses 
 
e1 = (C 10 :+ (C 8 :/ C 2)) :* (C 7 :- C 4) 
 
evaluate :: Expr -> Float 
evaluate (C x) = x 
evaluate (e1 :+ e2) = evaluate e1 + evaluate e2 
evaluate (e1 :- e2) = evaluate e1 - evaluate e2 
evaluate (e1 :* e2) = evaluate e1 * evaluate e2 
evaluate (e1 :/ e2) = evaluate e1 / evaluate e2 
 
 

Main> evaluate e1 
42.0 
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Infinite Trees 
• Can we make an Expr tree that represents the 

infinite expression:    1 + 2 + 3 + 4 …. 
 
 
 

sumFromN n = C n :+ (sumFromN (n+1)) 
sumAll = sumFromN 1 

 
 
 
 

add1 (C n) = C (n+1) 
add1 (x :+ y) = add1 x :+ add1 y 
add1 (x :- y) = add1 x :- add1 y 
add1 (x :* y) = add1 x :* add1 y 
add1 (x :/ y) = add1 x :/ add1 y 

 

sumAll2 = C 1 :+ (add1 sumAll2) 
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Observing Infinite Trees 
• We  can observe an infinite tree by printing a finite 

prefix of it. We need a take-like function for trees. 
 

showE 0 _ = "..." 
showE n (C m) = show m 
showE n (x :+ y) = "(" ++ (showE (n-1) x) ++ "+"  
                       ++ (showE (n-1) y) ++ ")" 

 
Main> showE 5 sumAll2 
"(1.0+(2.0+(3.0+(4.0+(...+...)))))" 
 
Main> showE 5 sumAll 
"(1.0+(2.0+(3.0+(4.0+(...+...)))))" 
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