
1

Extended Example:
Simple Tree Editor
using the “Zipper”

2

“General” Trees:

• A forest is a list of tree nodes, each of which has a
value and a forest of children:

type Forest a = [Node a]
data Node a = Node a (Forest a)

• A simple example:

myForest :: Forest String
myForest = [Node "1"

[Node "1.1"
[Node "1.1.1" []],

Node "1.2" []],
Node "2" []]

3

Operations on Forests:
• forestElems enumerates the values in a forest in depth-

first order:

forestElems :: Forest a -> [a]

forestElems = concat . map nodeElems

where nodeElems (Node x cs) = x : forestElems cs

• depthMap annotates a forest using depth information:

depthMap :: (Int -> a -> b) -> Int -> Forest a -> Forest b

depthMap f d = map depthNode

where depthNode (Node x cs)

= Node (f d x) (depthMap f (d+1) cs)

4

Displaying Forests:

• Displaying a forest:
showForest :: Forest String -> String

showForest = unlines

. forestElems

. depthMap indent 1

where indent d xs = replicate (2*d) '\SP' ++ xs

• Note: (from the Prelude)
unlines :: [String] -> String

unlines = concat . map (++"\n")

5

Positions in a Tree:

How can you identify a particular position in a
tree … without pointers?

6

Positions in a Tree:

Split the row containing the current node into a left
and right portion

7

Positions in a Tree:

Add the layers on top

8

Positions in a Tree:

Where each layer contains a left portion, a single element,
and a right portion

9

Positions in a Tree:

data Position a = Pos [Node a] [Level a] [Node a]

type Level a = ([Node a], a, [Node a])

10

Forests and Positions:

Converting between forests and positions:

rootPosition :: Forest a -> Position a
rootPosition f = Pos [] [] f

reconstruct :: Position a -> Forest a
reconstruct (Pos ls us rs) = foldl recon (reverse ls ++ rs) us
where recon fs (ls,x,rs) = reverse ls ++ [Node x fs] ++ rs

Note: reconstruct looses information
reconstruct . rootPosition = id
rootPosition . reconstruct id

11

Moving Around a Forest:

moveLeft, moveRight

:: Position a -> Maybe (Position a)

moveLeft (Pos ls us rs)

= case ls of
[] -> Nothing
(n:ns) -> Just (Pos ns us (n:rs))

moveRight (Pos ls us rs)

= case rs of
[] -> Nothing
(n:ns) -> Just (Pos (n:ls) us ns)

12

Identifying a Recurring Pattern:

repos :: [b] -> (b -> [b] -> a) -> Maybe a
repos xs f = case xs of

[] -> Nothing
(n:ns) -> Just (f n ns)

moveLeft (Pos ls us rs)
= repos ls (\n ns -> Pos ns us (n:rs))

moveRight (Pos ls us rs)
= repos rs (\n ns -> Pos (n:ls) us ns)

moveDown (Pos ls us rs)
= repos rs (\(Node x cs) ns ->

Pos [] ((ls,x,ns):us) cs)

13

Other Operations:

• Modifying the tree:
insertNode :: a -> Position a -> Position a
insertNode x (Pos ls us rs)

= Pos ls us (Node x [] : rs)

deleteNode :: Position a -> Maybe (Position a)
deleteNode (Pos ls us rs)

= repos rs (_ ns -> Pos ls us ns)

• Reflecting the tree:
reflect :: Position a -> Position a
reflect (Pos ls us rs) = Pos rs us ls

14

For Further Information:

• A simple interactive tree editor, Mark P Jones

• Functional Pearl: The Zipper, Gérard Huet

