
Putting Laziness to Work 



Why use laziness 

• Laziness has lots of interesting uses 
– Build cyclic structures. Finite representations of 

infinite data. 
– Do less work, compute only those values demanded 

by the final result. 
– Build infinite intermediate data structures and actually 

materialize only those parts of the structure of 
interest. 

• Search based solutions using enumerate then test . 
– Memoize or remember past results so that they don’t 

need to be recomputed 



Cyclic structures 

• cycles:: [Int] 
• cycles = 1 : 2 : 3 : cycles 
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Cyclic Trees 

• data Tree a = Tip a | Fork (Tree a) (Tree a) 
 

• t2 = Fork (Fork (Tip 3) (Tip 4)) (Fork (Tip 9) t2) 
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Mutually Cyclic 
(t3,t4) = ( Fork (Fork (Tip 11) t3) t4 
          , Fork (Tip 21) (Fork (Tip 33) t3) 
          ) 
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Prime numbers and infinite lists 
primes :: [Integer] 

primes = sieve [2..] 

  where sieve (p:xs) = 

           p : sieve [x | x<-xs 

                     , x `mod` p /= 0] 

 



Dynamic Programming 
• Consider the function 

 
fib :: Integer -> Integer 
fib 0 = 1 
fib 1 = 1 
fib n = fib (n-1) + fib (n-2) 

 
LazyDemos> :set +s 
LazyDemos> fib 30 
1346269 
(48072847 reductions, 78644372 cells, 1 garbage 

collection) 

 
• takes about 9 seconds on my machine! 



Why does it take so long? 

• Consider (fib 6) 
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What if we could remember past results? 

• Strategy 
– Create a data structure 
– Store the result for every (fib n) only if (fib n) is 

demanded. 
– If it is ever demanded again return the result in 

the data structure rather than re-compute it 
• Laziness is crucial 
• Constant time access is also crucial 

– Use of functional arrays 



Lazy Arrays 
import Data.Array 
table = array (1,5) 
           [(1,'a'),(2,'b'),(3,'c'),(5,'e'),(4,'d')] 

 
• The array is created once 
• Any size array can be created 
• Slots cannot be over written 
• Slots are initialized by the list 
• Constant access time to value stored in every slot 



Taming the duplication 

fib2 :: Integer -> Integer 
fib2 z = f z 
  where table = array (0,z) [ (i, f i) | i <- range (0,z) ] 
        f 0 = 1 
        f 1 = 1 
        f n = (table ! (n-1)) + (table ! (n-2)) 
 
 
LazyDemos> fib2 30 
1346269 
(4055 reductions, 5602 cells) 

Result is instantaneous on my machine 



Can we abstract over this pattern? 

• Can we write a memo function that memoizes 
another function. 

• Allocates an array 
• Initializes the array with calls to the function 
• But, We need a way to intercept recursive calls 



A fixpoint operator does the trick 

 
• fix f = f (fix f) 
 

• g fib 0 = 1 
• g fib 1 = 1 
• g fib n = fib (n-1) + fib (n-2) 
 

• fib1 = fix g 



Generalizing 

memo :: Ix a => (a,a) -> ((a -> b) -> a -> b) -> a -> b 
memo bounds g = f 
  where arrayF = array bounds  
                       [ (n, g f n) | n <- range bounds ] 
        f x = arrayF ! x 
 
 
fib3 n = memo (0,n) g n 
 
 
 
fact = memo (0,100) g 
   where g fact n =  
           if n==0 then 1 else n * fact (n-1) 
 
 
 



Representing 
Graphs 

import ST 
import qualified Data.Array as A 
type Vertex  = Int 
 
-- Representing graphs: 
 
type Table a = A.Array Vertex a 
type Graph   = Table [Vertex] 
               -- Array Int [Int] 
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Functions on graphs 

type Vertex = Int 
type Edge = (Vertex,Vertex) 
 
vertices :: Graph -> [Vertex] 
 
indices :: Graph -> [Int] 
 
edges :: Graph -> [Edge] 



Building 
Graphs 

buildG :: Bounds -> [Edge] -> Graph 
 
graph = buildG (1,10) 
          [ (1, 2),  (1, 6),  (2, 3), 
            (2, 5),  (3, 1),  (3, 4), 
            (5, 4),  (7, 8),  (7, 10), 
            (8, 6),  (8, 9),  (8, 10) ] 
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DFS and Forests 

data Tree a   = Node a (Forest a)   
type Forest a = [Tree a] 
 
 
nodesTree (Node a f) ans =  
   nodesForest f (a:ans) 
 
nodesForest [] ans = ans 
nodesForest (t : f) ans =  
   nodesTree t (nodesForest f ans) 

 
• Note how any tree can be spanned  
• by a Forest. The Forest is not always 
• unique. 
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DFS 

• The DFS algorithm finds a spanning forest for a 
graph, from a set of roots. 
 

dfs :: Graph -> [Vertex] -> Forest Vertex 
 
dfs          :: Graph -> [Vertex] -> Forest Vertex 
dfs g vs      = prune (A.bounds g) (map (generate g) vs) 
 
generate     :: Graph -> Vertex -> Tree Vertex 
generate g v  = Node v (map (generate g) (g `aat` v)) 

 

Array indexing 

An infinite 
cyclic tree 



Sets of nodes already visited 

import qualified Data.Array.ST as B 
type Set s    = B.STArray s Vertex Bool 
 
mkEmpty      :: Bounds -> ST s (Set s) 
mkEmpty bnds  = newSTArray bnds False 
 
contains     :: Set s -> Vertex -> ST s Bool 
contains m v  = readSTArray m v 
 
include      :: Set s -> Vertex -> ST s () 
include m v   = writeSTArray m v True 
 

Mutable array 



Pruning already visited paths 
prune :: Bounds -> Forest Vertex -> Forest Vertex 
prune bnds ts =  
    runST (do { m <- mkEmpty bnds; chop m ts }) 
 
chop :: Set s -> Forest Vertex -> ST s (Forest Vertex) 
chop m []     = return [] 
chop m (Node v ts : us) 
  do { visited <- contains m v 
      ; if visited 
           then chop m us 
           else do { include m v 
                   ; as <- chop m ts 
                   ; bs <- chop m us 
                   ; return(Node v as : bs) 
                   } 
     } 
                



Topological Sort 

 
postorder :: Tree a -> [a] 
postorder (Node a ts) = postorderF ts ++ [a] 
 
postorderF   :: Forest a -> [a] 
postorderF ts = concat (map postorder ts) 
 
postOrd      :: Graph -> [Vertex] 
postOrd       = postorderF . Dff 
 
dff          :: Graph -> Forest Vertex 
dff g         = dfs g (vertices g) 
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A. Control Flow Graph 
a :: Graph Char a 

B. DFS Labeled Graph 
b :: Graph Char (Int,[Char]) 
dfsnum :: v->Int 
dfsnum v = fst(apply b v) 
dfspath:: v->[v] 
dfspath v = snd(apply b v) 
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C. Semi-Dominator  
     Labeled Graph 
c :: Graph Char Char 
semi :: v->v 
semi = apply c 
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D. Semi-Dominator Graph 
d :: Graph Char a 
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E. Dominator Graph 
e :: Graph Char a 

dfslabel f map g induce 


	Putting Laziness to Work
	Why use laziness
	Cyclic structures
	Cyclic Trees
	Mutually Cyclic
	Prime numbers and infinite lists
	Dynamic Programming
	Why does it take so long?
	What if we could remember past results?
	Lazy Arrays
	Taming the duplication
	Can we abstract over this pattern?
	A fixpoint operator does the trick
	Generalizing
	Representing Graphs
	Functions on graphs
	Building Graphs
	DFS and Forests
	DFS
	Sets of nodes already visited
	Pruning already visited paths
	Topological Sort
	Slide Number 23

