
Putting Laziness to Work

Why use laziness

• Laziness has lots of interesting uses
– Build cyclic structures. Finite representations of

infinite data.
– Do less work, compute only those values demanded

by the final result.
– Build infinite intermediate data structures and actually

materialize only those parts of the structure of
interest.

• Search based solutions using enumerate then test .
– Memoize or remember past results so that they don’t

need to be recomputed

Cyclic structures

• cycles:: [Int]
• cycles = 1 : 2 : 3 : cycles

1 2 3

Cyclic Trees

• data Tree a = Tip a | Fork (Tree a) (Tree a)

• t2 = Fork (Fork (Tip 3) (Tip 4)) (Fork (Tip 9) t2)

Fork

Fork Fork

Tip 3 Tip 4 Tip 9

Mutually Cyclic
(t3,t4) = (Fork (Fork (Tip 11) t3) t4
 , Fork (Tip 21) (Fork (Tip 33) t3)
)

Fork

Tip 11

Tip 21
Fork

Fork

Fork

Tip 33

Prime numbers and infinite lists
primes :: [Integer]

primes = sieve [2..]

 where sieve (p:xs) =

 p : sieve [x | x<-xs

 , x `mod` p /= 0]

Dynamic Programming
• Consider the function

fib :: Integer -> Integer
fib 0 = 1
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

LazyDemos> :set +s
LazyDemos> fib 30
1346269
(48072847 reductions, 78644372 cells, 1 garbage

collection)

• takes about 9 seconds on my machine!

Why does it take so long?

• Consider (fib 6)
 fib 6

fib 5 fib 4

fib 2

fib 1 fib 0

fib 3

fib 2

fib 1 fib 0

fib 1

fib 3

fib 2

fib 1 fib 0

fib 1

fib 4

fib 2

fib 1 fib 0

fib 3

fib 2

fib 1 fib 0

fib 1

What if we could remember past results?

• Strategy
– Create a data structure
– Store the result for every (fib n) only if (fib n) is

demanded.
– If it is ever demanded again return the result in

the data structure rather than re-compute it
• Laziness is crucial
• Constant time access is also crucial

– Use of functional arrays

Lazy Arrays
import Data.Array
table = array (1,5)
 [(1,'a'),(2,'b'),(3,'c'),(5,'e'),(4,'d')]

• The array is created once
• Any size array can be created
• Slots cannot be over written
• Slots are initialized by the list
• Constant access time to value stored in every slot

Taming the duplication

fib2 :: Integer -> Integer
fib2 z = f z
 where table = array (0,z) [(i, f i) | i <- range (0,z)]
 f 0 = 1
 f 1 = 1
 f n = (table ! (n-1)) + (table ! (n-2))

LazyDemos> fib2 30
1346269
(4055 reductions, 5602 cells)

Result is instantaneous on my machine

Can we abstract over this pattern?

• Can we write a memo function that memoizes
another function.

• Allocates an array
• Initializes the array with calls to the function
• But, We need a way to intercept recursive calls

A fixpoint operator does the trick

• fix f = f (fix f)

• g fib 0 = 1
• g fib 1 = 1
• g fib n = fib (n-1) + fib (n-2)

• fib1 = fix g

Generalizing

memo :: Ix a => (a,a) -> ((a -> b) -> a -> b) -> a -> b
memo bounds g = f
 where arrayF = array bounds
 [(n, g f n) | n <- range bounds]
 f x = arrayF ! x

fib3 n = memo (0,n) g n

fact = memo (0,100) g
 where g fact n =
 if n==0 then 1 else n * fact (n-1)

Representing
Graphs

import ST
import qualified Data.Array as A
type Vertex = Int

-- Representing graphs:

type Table a = A.Array Vertex a
type Graph = Table [Vertex]
 -- Array Int [Int]

Index for each
node

Edges (out of)
that index

1

2 3

4 5

7
8

9
10

6

1 [2,3]
2 [7,4]
3 [5]
4 [6,9,7]
5 [8]
6 [9]
7 [9]
8 [10]
9 [10]
10 []

Functions on graphs

type Vertex = Int
type Edge = (Vertex,Vertex)

vertices :: Graph -> [Vertex]

indices :: Graph -> [Int]

edges :: Graph -> [Edge]

Building
Graphs

buildG :: Bounds -> [Edge] -> Graph

graph = buildG (1,10)
 [(1, 2), (1, 6), (2, 3),
 (2, 5), (3, 1), (3, 4),
 (5, 4), (7, 8), (7, 10),
 (8, 6), (8, 9), (8, 10)]

1

2

5

6

4
7

8

9

10

3

DFS and Forests

data Tree a = Node a (Forest a)
type Forest a = [Tree a]

nodesTree (Node a f) ans =
 nodesForest f (a:ans)

nodesForest [] ans = ans
nodesForest (t : f) ans =
 nodesTree t (nodesForest f ans)

• Note how any tree can be spanned
• by a Forest. The Forest is not always
• unique.

1

2

5

6

4
7

8

9

10

3

DFS

• The DFS algorithm finds a spanning forest for a
graph, from a set of roots.

dfs :: Graph -> [Vertex] -> Forest Vertex

dfs :: Graph -> [Vertex] -> Forest Vertex
dfs g vs = prune (A.bounds g) (map (generate g) vs)

generate :: Graph -> Vertex -> Tree Vertex
generate g v = Node v (map (generate g) (g `aat` v))

Array indexing

An infinite
cyclic tree

Sets of nodes already visited

import qualified Data.Array.ST as B
type Set s = B.STArray s Vertex Bool

mkEmpty :: Bounds -> ST s (Set s)
mkEmpty bnds = newSTArray bnds False

contains :: Set s -> Vertex -> ST s Bool
contains m v = readSTArray m v

include :: Set s -> Vertex -> ST s ()
include m v = writeSTArray m v True

Mutable array

Pruning already visited paths
prune :: Bounds -> Forest Vertex -> Forest Vertex
prune bnds ts =
 runST (do { m <- mkEmpty bnds; chop m ts })

chop :: Set s -> Forest Vertex -> ST s (Forest Vertex)
chop m [] = return []
chop m (Node v ts : us)
 do { visited <- contains m v
 ; if visited
 then chop m us
 else do { include m v
 ; as <- chop m ts
 ; bs <- chop m us
 ; return(Node v as : bs)
 }
 }

Topological Sort

postorder :: Tree a -> [a]
postorder (Node a ts) = postorderF ts ++ [a]

postorderF :: Forest a -> [a]
postorderF ts = concat (map postorder ts)

postOrd :: Graph -> [Vertex]
postOrd = postorderF . Dff

dff :: Graph -> Forest Vertex
dff g = dfs g (vertices g)

A

B C

D E

G

H

I

J

F

A

B C

D E

G

H

I

J

F

(0,””)

(1,A) (5,A)

(2,CA)

(3,ECA)

(4,HECA)

(6,BA)

(7,DBA)

(8,GDBA)

(9,DBA)

A. Control Flow Graph
a :: Graph Char a

B. DFS Labeled Graph
b :: Graph Char (Int,[Char])
dfsnum :: v->Int
dfsnum v = fst(apply b v)
dfspath:: v->[v]
dfspath v = snd(apply b v)

A

B C

D E

G

H

I

J

F

(A)

(A) (A)

(C)

(C)

(A)

(B)

(B)

(D)

(D)

C. Semi-Dominator
 Labeled Graph
c :: Graph Char Char
semi :: v->v
semi = apply c

A

B C

D G E

J

H

F I

D. Semi-Dominator Graph
d :: Graph Char a

A

B C

D G E

J

H

F

I

E. Dominator Graph
e :: Graph Char a

dfslabel f map g induce

	Putting Laziness to Work
	Why use laziness
	Cyclic structures
	Cyclic Trees
	Mutually Cyclic
	Prime numbers and infinite lists
	Dynamic Programming
	Why does it take so long?
	What if we could remember past results?
	Lazy Arrays
	Taming the duplication
	Can we abstract over this pattern?
	A fixpoint operator does the trick
	Generalizing
	Representing Graphs
	Functions on graphs
	Building Graphs
	DFS and Forests
	DFS
	Sets of nodes already visited
	Pruning already visited paths
	Topological Sort
	Slide Number 23

