
1

CS 457/557: Functional
Languages

An Introduction to Control.Parallel

Mark P Jones

Portland State University

A Silly, Slow Program:

> fib 0 = 0

> fib 1 = 1

> fib n = fib (n-1) + fib (n-2)

> nfib 0 = 1

> nfib 1 = 1

> nfib n = 1 + nfib (n-1) + nfib (n-2)

> diffib n = nfib n - fib n

> main = print (diffib 38) 2

Why is it Slow?

prompt$ ghc --make par.lhs -o par

prompt$./par +RTS -s

87403802

prompt$ cat par.stat

16,759,034,836 bytes allocated in the heap

 11,625,744 bytes copied during GC (scavenged)

 2,884,616 bytes copied during GC (not scavenged)

 24,576 bytes maximum residency (2 sample(s))

…

 INIT time 0.00s (0.03s elapsed)

 MUT time 17.05s (17.25s elapsed)

 GC time 0.21s (0.28s elapsed)

 EXIT time 0.00s (0.00s elapsed)

 Total time 17.26s (17.56s elapsed)

…

prompt$

3

Introducing Control.Parallel:

par :: a -> b -> b

par x y is semantically just y, but hints to the

compiler that it might be useful to start evaluating x

pseq :: a -> b -> b

pseq x y is semantically just y, but will evaluate x

before returning a result

4

A Silly, Parallel Program:

> fib 0 = …

> nfib 0 = …

> diffib n = let l = nfib n

> r = fib n

> in par l (l - r)

> main = print (diffib 38)

5

Does this Run Better?

prompt$ ghc --make –threaded par1a.lhs -o par1a

prompt$./par1a +RTS -s

87403802

prompt$ cat par1a.stat

16,759,034,836 bytes allocated in the heap

 11,625,760 bytes copied during GC (scavenged)

 2,884,616 bytes copied during GC (not scavenged)

 24,576 bytes maximum residency (2 sample(s))

…

 INIT time 0.00s (0.00s elapsed)

 MUT time 16.43s (16.63s elapsed)

 GC time 0.21s (0.28s elapsed)

 EXIT time 0.00s (0.00s elapsed)

 Total time 16.64s (16.91s elapsed)

…

prompt$

6

On Multiple Cores:

prompt$./par1a +RTS -s -N2

87403802

prompt$ cat par1a.stat

16,759,034,636 bytes allocated in the heap

 11,618,096 bytes copied during GC (scavenged)

 2,878,584 bytes copied during GC (not scavenged)

 24,576 bytes maximum residency (2 sample(s))

 INIT time 0.00s (0.00s elapsed)

 MUT time 16.47s (16.89s elapsed)

 GC time 0.25s (0.33s elapsed)

 EXIT time 0.00s (0.00s elapsed)

 Total time 16.73s (17.23s elapsed)

prompt$

7

A Different, Silly Program:

> fib 0 = …

> nfib 0 = …

> diffib n = let l = nfib n

> r = fib n

> in par r (l - r)

> main = print (diffib 38)

8

At Last, a Speedup!

prompt$ ghc --make -threaded par1b.lhs -o par1b

prompt$./par1b +RTS -s -N2 ; cat par1b.stat

87403802

16,759,227,260 bytes allocated in the heap

 12,463,976 bytes copied during GC (scavenged)

 3,158,992 bytes copied during GC (not scavenged)

 28,672 bytes maximum residency (2 sample(s))

…

 INIT time 0.00s (0.00s elapsed)

 MUT time 16.54s (9.30s elapsed)

 GC time 0.21s (0.25s elapsed)

 EXIT time 0.00s (0.00s elapsed)

 Total time 16.75s (9.56s elapsed)

…

prompt$

9

A More Robust, Silly Program:

> fib 0 = …

> nfib 0 = …

> diffib n = let l = nfib n

> r = fib n

> in par l (pseq r (l - r))

> main = print (diffib 38)

10

A More Robust, Silly Program:

> fib 0 = …

> nfib 0 = …

> diffib n = let l = nfib n

> r = fib n

> in l `par` r `pseq` (l-r)

> main = print (diffib 38)

11

Consistent Speedup!

prompt$./par2 +RTS -s -N2 ; cat par2.stat

87403802

16,759,225,356 bytes allocated in the heap

 12,494,824 bytes copied during GC (scavenged)

 3,179,576 bytes copied during GC (not scavenged)

 24,576 bytes maximum residency (2 sample(s))

...

 INIT time 0.00s (0.03s elapsed)

 MUT time 16.53s (9.66s elapsed)

 GC time 0.21s (0.27s elapsed)

 EXIT time 0.00s (0.00s elapsed)

 Total time 16.74s (9.95s elapsed)

...

prompt$

12

Back to Fractals:

13

Leveraging Parallelism:

> sample :: Grid Point

> -> Image color

> -> Grid color

> sample points image

> = map (map image) points

This looks like a good candidate for parallelization …

But how?

14

Control.Parallel.Strategies:

type Strategy a = a -> ()

The result of a strategy is always (), except that it

may do some work to evaluate the argument first

using :: a -> Strategy a -> a

e `using` s is semantically just the same as e,

except that it applies the strategy s

15

Control.Parallel.Strategies:

class NFData a where

 rnf :: Strategy a

rnf is a strategy for reducing values to normal form

instance NFData Int where …

instance NFData Bool where …

instance NFData a => NFData [a]

where …

… 16

Control.Parallel.Strategies:

parList

 :: Strategy a -> Strategy [a]

Evaluate a list in parallel, using the argument strategy

for each element.

 parMap :: Strategy b ->

 (a -> b) -> [a] -> [b]

 parMap s f xs

 = map f xs `using` parList s

17

Adopting a Strategy:

> sample :: NFData color

> => Grid Point

> -> Image color

> -> Grid color

> sample points image

> = parMap rnf (map image) points

(also need to add an NFData color context to the
type of draw)

18

Adopting a Strategy:

> sample :: NFData color

> => Grid Point

> -> Image color

> -> Grid color

> sample points image

> = map (map image) points

> `using` parList rnf

(also need to add an NFData color context to the
type of draw)

19

Adopting a Strategy:

> sample :: Grid Point

> -> Image color

> -> Grid color

> sample points image

> = map (map image) points

> draw pal grid render

> = render (sample grid (fracImage pal)

> `using` parList rnf)

20

Before:

prompt$ ghc --make -threaded parfrac.lhs -o parfrac

prompt$./parfrac +RTS -s -N1 ; cat parfrac.stat

8,746,623,328 bytes allocated in the heap

113,302,744 bytes copied during GC (scavenged)

 14,617,944 bytes copied during GC (not scavenged)

 192,512 bytes maximum residency (120 sample(s))

...

 INIT time 0.00s (0.00s elapsed)

 MUT time 8.38s (8.88s elapsed)

 GC time 0.65s (0.69s elapsed)

 EXIT time 0.00s (0.00s elapsed)

 Total time 9.03s (9.57s elapsed)

...

prompt$

21

After:

prompt$ ghc --make -threaded parfrac.lhs -o parfrac

prompt$./parfrac +RTS -s -N1 ; cat parfrac.stat

8,863,473,948 bytes allocated in the heap

180,756,008 bytes copied during GC (scavenged)

 14,648,536 bytes copied during GC (not scavenged)

 352,256 bytes maximum residency (195 sample(s))

...

 INIT time 0.00s (0.00s elapsed)

 MUT time 9.04s (9.56s elapsed)

 GC time 1.05s (1.10s elapsed)

 EXIT time 0.00s (0.00s elapsed)

 Total time 10.08s (10.66s elapsed)

...

prompt$

22

After (-N2):

prompt$ ghc --make -threaded parfrac.lhs -o parfrac

prompt$./parfrac +RTS -s -N2 ; cat parfrac.stat

9,593,542,412 bytes allocated in the heap

355,170,160 bytes copied during GC (scavenged)

 14,272,640 bytes copied during GC (not scavenged)

 1,351,680 bytes maximum residency (335 sample(s))

...

 INIT time 0.00s (0.00s elapsed)

 MUT time 9.72s (5.57s elapsed)

 GC time 1.71s (1.77s elapsed)

 EXIT time 0.00s (0.00s elapsed)

 Total time 11.43s (7.34s elapsed)

...

prompt$

23

Conclusions:

! " Control.Parallel provides simple mechanisms that

can be used to annotate code with hints for
parallel execution (and potential speedup on

multiprocessor/multicore machines)

! " Experimentation may be required to determine
best uses for annotations

! " Algorithm + Strategy = Parallelism

! " Further reading: RWH Chapter 24

24

