Testing in Haskell:

an introduction to HUnit and QuickCheck

Mark P Jones
Portland State University

Testing, Testing, Testing, ...

Testing:

Testing can confirm expectations about how
things work

Conversely, testing can set expectations about
how things should work

It can be dangerous to generalize from tests

“Testing can be used to show the presence of bugs, but
never to show their absence” [Edsger Dijkstra, 1969]

But testing does help us to find & avoid:
= Bugs in the things we build
= Bugs in the claims we make about those things

Example: filter

filter :: (a -> Bool) -> [a] -> [a]
filter even [1..10] = [2,4,6,8,10]
filter (<5) [1..100] = [1,2,3,4]

filter (<5) [100,99..1] = [4,3,2,1]

Making Tests Executable:

testl = filter even [1..10] == [2,4,6,8,10]
test2 = filter (<5) [1..100] == [1,2,3,4]

test3 = filter (<5) [100,99..1] == [4,3,2,1]

Making Tests Executable:

testl = filter even [1..10] == [2,4,6,8,10]
test?2 = filter (<5) [1..100] == [1,2,3,4]
test3 = filter (<5) [100,99..1] == [4,3,2,1]

tests = testl && test?2 && test3

Pros:
Tests are simple functional programs
Tests are self-checking

Cons:
Have to run tests manually
Testing stops as soon as one test fails
No indication of which test failed
No summary statistics (e.g., # tests run)

Harder to handle complex behavior (e.q.,
testing code that performs I/O actions, raises
an exception, ...)

Unit Testing in Haskell

Enter HUNIt:

A library for unit testing

Written in Haskell

Available from http://hunit.sourceforge.net
(Or from http://hackage.haskell.orq)

Built-in to recent versions of Hugs and GHC

Just “import Test.HUnit” and you're ready!

http://hunit.sourceforge.net
http://hackage.haskell.org

Defining Tests:

Import Test.HUnit

testl = TestCase (assertEqual

"filter even
(filter even [
[2,4,6,8,10])
test2 = ...
test3 =

1.
1.

10°
10°

tests = TestList [testl, test?, test3]

10

Running Tests:

Main> runTestlT tests
Cases: 3 Tried: 3 Errors: O Failures: O

Main>

11

Detecting Faults:

Import Test.HUnit

testl = TestCase (assertEqual

“filter even
(filter even
[2,4 60])
test2 = ...
test3 = ...

j1..

10°
1..10°

tests = TestList [testl, test?, test3]

7

12

Using HUNIt:

Main> runTestTT tests

Failure in: 0

filter even [1..10]

expected: [2,4,6,8,10]

but got: [2,4,6,9,10]

Cases: 3 Tried: 3 Errors: 0 Failures: 1

Main>

13

Labeling Tests:

tests = TestLabel “filter tests”
$ TestList [testl, test2, test3]

14

Using HUNIt:

Main> runTestTT tests

Failure in: filter tests:0

filter even [1..10]

expected: [2,4,6,8,10]

but got: [2,4,6,9,10]

Cases: 3 Tried: 3 Errors: O Failures: 1

Main>

15

The Test and Assertion Types:

data Test = TestCase Assertion
| TestList [Test]
| TestLabel String Test

runTestTT :: Test -> IO Counts

assertFailure :: String -> Assertion

assertBool :: String -> Bool -> Assertion

assertEqual :: (Eg a, Show a) =>
String->a->a->

Assertion y

Problems:

Finding and running tests is a manual
process (easily skipped/overlooked)

Tt can be hard to trim tests from distributed
code

We still can’t solve the halting problem ©

17

Example: merge

Let’s develop a merge function for combining
two sorted lists into a single sorted list:

merge :: [Int] -> [Int] -> [Int]
merge = undefined

What about test cases?

18

Merge Tests:

Simple examples:
merge [1,5,9] [2,3,6,10] ==[1,2,3,5,6,9,10]

One or both arguments empty:
merge [] [1,2,3] == [1,2,3]
merge [1,2,3] [] == [1,2,3]

Duplicate elements:
merge [2] [1,2,3] == [1,2,3]
merge [1,2,3] [2] == [1,2,3]

19

Capturing the Tests:

mergeTests
= TestLabel "merge tests”
$ TestList [simpleTests, emptyTests, dupTests]

simpleTests
= TestLabel "simple tests”
$ TestCase (assertEqual "merge [1,5,9] [2,3,6,10]"
(merge [1,5,9] [2,3,6,10])
[1,2,3,5,6,9,10])

emptyTests

20

Capturing the Tests:

Main> runTestTT mergelests
Cases: 6 Tried: 0 Errors: O Failures: 0
Program error: Prelude.undefined

Main>

21

Refining the Definition (1):

Let’s provide a little more definition for

merge:

merge
merge Xs ys =

:: [Int] -> [Int] -> [Int]

]

What happens to the test cases now?

22

Back to the Tests:

Main> runTestTT mergelests

##4# Failure in: merge tests:0:simple tests
merge [1,5,9] [2,3,6,10]

expected: []

but got: [1,2,3,5,6,9,10]

Cases: 6 Tried: 6 Errors: O Failures: 5

Main>

23

Refining the Definition (2):

Let’s provide a little more definition for
merge:

merge :: [Int] -> [Int] -> [Int]
merge XS yS = XS

What happens to the test cases now?

24

Back to the Tests:

Main> runTestTT mergeTlests

Failure in: merge tests:0:simple tests

merge [1,5,9] [2,3,6,10]

expected: [1,5,9]

but got: [1,2,3,5,6,9,10]

Failure in: merge tests:2:duplicate elements:0
merge [2] [1,2,3]

expected: [2]

but got: [1,2,3]

Cases: 6 Tried: 6 Errors: 0 Failures: 2

Main>

25

Refining the Definition (3):

Use type information to break the definition
down into multiple cases:

merge .1 [Int] -> [Int] -> [Int]
merge [] YS = VS
merge (X:XS) yS = ysS

26

Refining the Definition (4):

Repeat ...

merge 2 [Int] -> [Int] -> [Int]
merge [] YS = VS
merge (X:xs) [] = X:xs

merge (X:Xxs) (y:ys)
= X:XS

27

Refining the Definition (5):

Use guards to split into cases:

merge :: [Int] -> [Int] -> [Int]
merge [] VS =1YS

merge (X:Xs) [] = X:Xs

merge (X:Xxs) (y:ys)

X<y = X : merge Xxs (Yy:ys)
otherwise = y : merge (X:xs) ys

28

Back to the Tests:

Main> runTestTT mergeTlests

Failure in: merge tests:2:duplicate elements:0
merge [2] [1,2,3]

expected: [1,2,2,3]

but got: [1,2,3]

Failure in: merge tests:2:duplicate elements:1
merge [1,2,3] [2]

expected: [1,2,2,3]

but got: [1,2,3]

Cases: 6 Tried: 6 Errors: 0 Failures: 2

Main>

29

Refining the Definition (6):

Use another guards to add another case:

merge :: [Int] -> [Int] -> [Int]
merge [] VS =1YS

merge (X:Xs) [] = X:Xs

merge (X:Xxs) (y:ys)

X<y = X : merge Xxs (Yy:ys)
y<X =Y : merge (X:XS) ys
X==y = X : merge XS ys

30

Back to the Tests:

Main> runTestTT mergeTlests
Cases: 6 Tried: 6 Errors: 0 Failures: 0

Main>

31

Modifying the Definition:

Suppose we decide to modify the definition:

merge :: [Int] -> [Int] -> [Int]
merge (X:xs) (y:ys)

X<y = X : merge xs (y:ys)
y<X =YV : merge (X:XS) ys
X== = X : merge XS ys
mergexs ys = XS ++ Vs

Is this still a valid definition?

32

Back to the Tests:

Main> runTestTT mergeTlests
Cases: 6 Tried: 6 Errors: 0 Failures: 0

Main>

33

L essons Learned:

Writing tests (even before we've written the
code we want to test) can expose key details /
design decisions

A library like HUnit can help to automate the
process (at least partially)

Development alternates between coding and
testing

Bugs are expensive, running tests is cheap

Good tests can last a long time; continuing use
as code evolves

34

Testing Laws with QuickCheck

35

Lawful Programming:

How can we give useful information about a
function without necessarily having to give all
the details of its definition?

Informal description:

“map applies its first argument to every element in its
second argument ...”

Type signature:
map :: (a->b) -> [a] -> [b]

Laws:
= Normally in the form of equalities between expressions ...

36

Algebra of Lists:

(++4) is associative with unit []
XS ++ (ys ++ zS) = (XS ++ ys) ++ zs
[]++ XS = XS = XS ++ []

map preserves identities, distributes over
composition and concatenation:

map id = id
map (f . g) =mapf.mapg
map f (xs ++ ys) =map fxs ++ map f ys

37

... continued:

filter distributes over concatenation
filter p (xs ++ ys) = filter p xs ++ filter p ys

filter and map:
filter p. map f = map f . filter (p . f)

composing filters:
filter p . filter g = filter r
wherer x = g X && p x

38

Uses for Laws:

Laws can be used:

To capture/document deep intuitions about
program behavior

To support reasoning about program
behavior

To optimize or transform programs (either
by hand, or in a compiler)

As properties to be tested

As properties to be proved

39

Wanted! Reward!

#However: In the short-term, programmers
don’t see any reward for writing laws ...

... so they won't write them.

#If programmers can derive some benefit
from writing laws, then perhaps they will do
it ...

40

Laws for Merge:

What laws might we formulate for merge?

= If xs and ys are sorted, then merge xs ys is
sorted

= merge (sort xs) (sort ys) should be sorted
= Mmerge Xs ys == merge ys XS

» MEerge Xs Xs == Xs

41

From Laws to Functions:

mergeProp1 :: [Int] -> [Int] -> Bool
mergePropl xs ys = sorted xs ==>
sorted ys ==>
sorted (merge Xs ys)

(>) :: Bool -> Bool -> Bool
=>y =notx ||y
sorted :: [Int] -> Bool

sorted xs = and [x <=y | (X,y) <- zip xs (tail xs)]

42

Testing mergeProp1.:

Main> mergePropl [1,4,7] [2,4,6]
True

Main> mergePropl [1,4,7] [2,4,1]
True

Main> sorted [1,4,7]

True

Main> sorted [2,4,1]

False

Main> Question: to test merge, I wrote more code ...

If I don't trust my programming skills, why am 1
writing even more (untrustworthy) code?

43

Formulate More Tests!

import List(sort)

sortSorts :: [Int] -> Bool
sortSorts xs = sorted (sort xs)

sortedEmpty :: Bool
sortedEmpty = sorted []

sortldempotent :: [Int] -> Bool
sortldempotent xs = sort (sort xs) == sort xs

44

More Laws to Functions:

mergePreservesOrder :: [Int] -> [Int] -> Bool
mergePreservesOrder xs ys
= sorted (merge (sort xs) (sort ys))

mergeCommutes :: [Int] -> [Int] -> Bool
mergeCommutes Xs ys
= merge us vs == merge Vs us
where us = sort xs
Vs = sort ys

etc...

45

Testing mergeProp1.:

Main> mergeCommutes [1,4,7] [2,4,6]
True

Main> mergeCommutes [1,4,7] [2,4,1]
True

Main> mergePreservesOrder [1,4,7] [2,4,6]
True

Main> mergePreservesOrder [1,4,7] [2,4,1]
True

Main>

46

Automated Testing:

Of course, we can run as many individual test
cases as we like:

= Pick a test case
= Execute the program
s Compare actual result with expected result

Wouldn't it be nice if the environment could help
us to go directly from properties to tests?

Wouldn't it be nice if the environment could run
the tests for us automatically too?

47

QuickCheck:

This is a job for QuickCheck!

“QuickCheck: A Lightweight Tool for Random
Testing of Haskell Programs” by Koen Claessen

and John Hughes, Chalmers University, Sweden.
(Published at ICFP 2000)

In GHC/Hugs: import Test.QuickCheck

48

Lawful Programming:

reverse ::[a] -> [a]
reverse xs = ...

{- reverse satisfies the following:

reverse (Xs ++ ys)

reverse ys ++ reverse Xs

"

49

Lawful Programming:

reverse ::[a] -> [a]
reverse xs = ...

Laws are type checked as
part of the main program
source text

prop_RevApp xsys _——
= reverse (Xs++Yys)

Freverse ys ++ reverse Xs
N
If the laws and the code
are inconsistent, then an
error will be detected!

50

Running QuickCheck;

Prelude> :load reverse.hs

Main> reverse [1,2,3]
[3,2,1]

Main> quickCheck prop_RevApp

B, passed 100 tests
Main>

51

Not All Laws are True:

Main> quickCheck (\b -> b == not b)
Falsifiable, after O tests:
True

Main>

Sometimes this points to a bug in the program.

Sometimes this points to a bug in the law.

52

The Testable Class:

quickCheck :: Testablea => a -> IO a

instance Testable Bool where ...

instance (Arbitrary a,% ndicates an ability to generate

arbitrary values of type a.
Show g,

Testable b)=> Testable (a -> b)
where ...

53

The Testable Class:

quickCheck :: Testablea => a -> IO a

instance Testable Bool where ...

instance (Arbitrary 2 Indicates an ability to display

arguments for counter examples
Show g,

Testable b)=> Testable (a -> b)
where ...

54

Generating Arbitrary Values:

arbitrary is a
generator of random
values

class Arbitrary a where —
arbitrary :: Gen a

instance Arbitrary ()
instance Arbitrary Bool
instance Arbitrary Int
instance Arbitrary Integer
instance Arbitrary Float
instance Arbitrary Double

instance (Arbitrary a, Arbitrary b) => Arbitrary (a,b)
instance Arbitrary a => Arbitrary [a]

Quantified or Parameterized?

Main> quickCheck prop_revApp
OK, passed 100 tests.

Main> quickCheck (prop_revApp [1,2,3])
OK, passed 100 tests.

Main>

m) If you don't give a specific value for an
argument, quickCheck will generate
arbitrary (i.e. random) values for you. ”

QuickCheck-ing merge:

Main> quickCheck mergeCommutes
OK, passed 100 tests.

Main> quickCheck mergePreservesOrder
OK, passed 100 tests.

Main>

So far, so good ...

57

Continued ...

mergeProp1 :: [Int] -> [Int] -> Bool
mergePropl xs ys = sorted xs ==>
sorted ys ==>
sorted (merge Xs ys)

What happens?
Main> quickCheck mergePropl
Falsifiable, after 7 tests:
[-1,-5,5,4,3,-5]
[5,-6,2,6,-6,0] Huh?

Main>

58

What went wrong?

Main> sorted [-1,-5,5,4,3,-5]

False

Main> sorted [5,-6,2,6,-6,0]

False

Main> sorted (merge [-1,-5,5,4,3,-5] [5,-6,2,6,-6,0])
False

Main> False ==> False ==> False
False

Main> False ==> (False ==> False)
True

Main>

59

A Fix! (in fact, infix)

infixr ==>
(==>) .. Bool -> Bool -> Bool
X ==>Y =nOtX||y

What happens?
Main> quickCheck mergeProp1l

OK, passed 100 tests.

Main>

Hooray!!!

60

Are we Happy Now?
mergeProp1 :: [Int] -> [Int] -> Bool
mergePropl xs ys = sorted xs ==>

sorted ys ==>
sorted (merge Xs ys)

100 tests passed!
But how many of them were trivial (i.e., one or both

arguments unsorted)?

61

Understanding Test Results:

Use the collect combinator:
mergeProplsorted xs ys
= collect (sorted xs, sorted ys) (mergePropl xs ys)

Testing:
Main> quickCheck mergeProp1lsorted
OK, passed 100 tests.
45% (False,False).
25% (True, True).
20% (True,False).
10% (False, True).

Main>

62

Understanding Test Results:

Or use the classify combinator:
mergePropllong xs ys
= classify (length xs > 10) "long"
$ classify (length xs <= 5) "short"
$ mergePropl xs ys

Testing:
Main> quickCheck mergePropliong
OK, passed 100 tests.
49% short.
29% long.

Main>

63

Understanding ==>:

The real (==>) operator is not a standard
“implies” function of type Bool -> Bool -> Bool

When we test a property p ==> ¢, QuickCheck
will try to find 100 test cases for which p is true,
and will test g in each of those 100 cases

If it tries 1000 candidates without finding enough

solutions, then it will give up:

Main> quickCheck (\b -> (b == not b) ==> b)
Arguments exhausted after 0 tests.

Main>

QuickCheck can be configured to use different

numbers of tests/attempts
64

Writing Custom Generators:

Instead of generating random values and
selecting only some, we can try to generate
the ones we want directly:

sortedList :: Gen [Int]
sortedList = do ns <- arbitrary
return (sort ns)

65

More Examples:

Now we can use QuickCheck’s forAll combinator to define:

prop_mergePreservesOrder = forAll sortedList $ \xs ->
forAll sortedList $ \ys ->
sorted (merge Xs ys)

prop_mergeCommutes = forAll sortedList $ \xs ->
forAll sortedList $ \ys ->
merge XS ys == merge
YS XS

prop_mergeldempotent = forAll sortedList $ \xs ->
merge Xs Xs == XS 66

L essons Learned:

QuickCheck is a useful and lightweight tool that
encourages and rewards the lawful programmer!

There is a script that automatically runs
quickCheck on all of the properties in a file that
have names of the form prop_XXX

Interpreting test results may require some care ...

“Good” (random) test data can be hard to find ...

67

