
1

Testing in Haskell:
an introduction to HUnit and QuickCheck

Mark P Jones

Portland State University

2

Testing, Testing, Testing, …

3

Testing:

Testing can confirm expectations about how
things work

Conversely, testing can set expectations about
how things should work

It can be dangerous to generalize from tests

“Testing can be used to show the presence of bugs, but
never to show their absence” [Edsger Dijkstra, 1969]

But testing does help us to find & avoid:

 Bugs in the things we build

 Bugs in the claims we make about those things

4

Example: filter

filter :: (a -> Bool) -> [a] -> [a]

filter even [1..10] = [2,4,6,8,10]

filter (<5) [1..100] = [1,2,3,4]

filter (<5) [100,99..1] = [4,3,2,1]

5

Making Tests Executable:

test1 = filter even [1..10] == [2,4,6,8,10]

test2 = filter (<5) [1..100] == [1,2,3,4]

test3 = filter (<5) [100,99..1] == [4,3,2,1]

6

Making Tests Executable:

test1 = filter even [1..10] == [2,4,6,8,10]

test2 = filter (<5) [1..100] == [1,2,3,4]

test3 = filter (<5) [100,99..1] == [4,3,2,1]

tests = test1 && test2 && test3

7

Pros:
Tests are simple functional programs

Tests are self-checking

Cons:
Have to run tests manually

Testing stops as soon as one test fails

No indication of which test failed

No summary statistics (e.g., # tests run)

Harder to handle complex behavior (e.g.,
testing code that performs I/O actions, raises
an exception, …)

8

Unit Testing in Haskell

9

Enter HUnit:

A library for unit testing

Written in Haskell

Available from http://hunit.sourceforge.net

(Or from http://hackage.haskell.org)

Built-in to recent versions of Hugs and GHC

Just “import Test.HUnit” and you’re ready!

http://hunit.sourceforge.net
http://hackage.haskell.org

10

Defining Tests:

import Test.HUnit

test1 = TestCase (assertEqual

"filter even [1..10]"

(filter even [1..10])

[2,4,6,8,10])

test2 = …

test3 = …

tests = TestList [test1, test2, test3]

11

Running Tests:

Main> runTestTT tests

Cases: 3 Tried: 3 Errors: 0 Failures: 0

Main>

12

Detecting Faults:

import Test.HUnit

test1 = TestCase (assertEqual

“filter even [1..10]”

(filter even [1..10])

[2,4,6,9,10])

test2 = …

test3 = …

tests = TestList [test1, test2, test3]

13

Using HUnit:

Main> runTestTT tests

Failure in: 0

filter even [1..10]

expected: [2,4,6,8,10]

but got: [2,4,6,9,10]

Cases: 3 Tried: 3 Errors: 0 Failures: 1

Main>

14

Labeling Tests:

…

tests = TestLabel “filter tests”

$ TestList [test1, test2, test3]

15

Using HUnit:

Main> runTestTT tests

Failure in: filter tests:0

filter even [1..10]

expected: [2,4,6,8,10]

but got: [2,4,6,9,10]

Cases: 3 Tried: 3 Errors: 0 Failures: 1

Main>

16

The Test and Assertion Types:

data Test = TestCase Assertion

| TestList [Test]

| TestLabel String Test

runTestTT :: Test -> IO Counts

assertFailure :: String -> Assertion

assertBool :: String -> Bool -> Assertion

assertEqual :: (Eq a, Show a) =>
String -> a -> a ->

Assertion

17

Problems:

Finding and running tests is a manual
process (easily skipped/overlooked)

It can be hard to trim tests from distributed
code

We still can’t solve the halting problem 

18

Example: merge

Let’s develop a merge function for combining
two sorted lists into a single sorted list:

merge :: [Int] -> [Int] -> [Int]

merge = undefined

What about test cases?

19

Merge Tests:

Simple examples:
merge [1,5,9] [2,3,6,10] == [1,2,3,5,6,9,10]

One or both arguments empty:
merge [] [1,2,3] == [1,2,3]

merge [1,2,3] [] == [1,2,3]

Duplicate elements:
merge [2] [1,2,3] == [1,2,3]

merge [1,2,3] [2] == [1,2,3]

20

Capturing the Tests:

mergeTests

= TestLabel "merge tests”

$ TestList [simpleTests, emptyTests, dupTests]

simpleTests

= TestLabel "simple tests”

$ TestCase (assertEqual "merge [1,5,9] [2,3,6,10]"

(merge [1,5,9] [2,3,6,10])

[1,2,3,5,6,9,10])

emptyTests

= …

21

Capturing the Tests:

Main> runTestTT mergeTests

Cases: 6 Tried: 0 Errors: 0 Failures: 0

Program error: Prelude.undefined

Main>

22

Refining the Definition (1):

Let’s provide a little more definition for
merge:

merge :: [Int] -> [Int] -> [Int]

merge xs ys = []

What happens to the test cases now?

23

Back to the Tests:

Main> runTestTT mergeTests

Failure in: merge tests:0:simple tests

merge [1,5,9] [2,3,6,10]

expected: []

but got: [1,2,3,5,6,9,10]

…

Cases: 6 Tried: 6 Errors: 0 Failures: 5

Main>

24

Refining the Definition (2):

Let’s provide a little more definition for
merge:

merge :: [Int] -> [Int] -> [Int]

merge xs ys = xs

What happens to the test cases now?

25

Back to the Tests:

Main> runTestTT mergeTests

Failure in: merge tests:0:simple tests

merge [1,5,9] [2,3,6,10]

expected: [1,5,9]

but got: [1,2,3,5,6,9,10]

Failure in: merge tests:2:duplicate elements:0

merge [2] [1,2,3]

expected: [2]

but got: [1,2,3]

Cases: 6 Tried: 6 Errors: 0 Failures: 2

Main>

26

Refining the Definition (3):

Use type information to break the definition
down into multiple cases:

merge :: [Int] -> [Int] -> [Int]

merge [] ys = ys

merge (x:xs) ys = ys

27

Refining the Definition (4):

Repeat …

merge :: [Int] -> [Int] -> [Int]

merge [] ys = ys

merge (x:xs) [] = x:xs

merge (x:xs) (y:ys)

= x:xs

28

Refining the Definition (5):

Use guards to split into cases:

merge :: [Int] -> [Int] -> [Int]

merge [] ys = ys

merge (x:xs) [] = x:xs

merge (x:xs) (y:ys)

| x<y = x : merge xs (y:ys)

| otherwise = y : merge (x:xs) ys

29

Back to the Tests:

Main> runTestTT mergeTests

Failure in: merge tests:2:duplicate elements:0

merge [2] [1,2,3]

expected: [1,2,2,3]

but got: [1,2,3]

Failure in: merge tests:2:duplicate elements:1

merge [1,2,3] [2]

expected: [1,2,2,3]

but got: [1,2,3]

Cases: 6 Tried: 6 Errors: 0 Failures: 2

Main>

30

Refining the Definition (6):

Use another guards to add another case:

merge :: [Int] -> [Int] -> [Int]

merge [] ys = ys

merge (x:xs) [] = x:xs

merge (x:xs) (y:ys)

| x<y = x : merge xs (y:ys)

| y<x = y : merge (x:xs) ys

| x==y = x : merge xs ys

31

Back to the Tests:

Main> runTestTT mergeTests

Cases: 6 Tried: 6 Errors: 0 Failures: 0

Main>

32

Modifying the Definition:

Suppose we decide to modify the definition:

merge :: [Int] -> [Int] -> [Int]

merge (x:xs) (y:ys)

| x<y = x : merge xs (y:ys)

| y<x = y : merge (x:xs) ys

| x==y = x : merge xs ys

merge xs ys = xs ++ ys

Is this still a valid definition?

33

Back to the Tests:

Main> runTestTT mergeTests

Cases: 6 Tried: 6 Errors: 0 Failures: 0

Main>

34

Lessons Learned:

Writing tests (even before we’ve written the
code we want to test) can expose key details /
design decisions

A library like HUnit can help to automate the
process (at least partially)

Development alternates between coding and
testing

Bugs are expensive, running tests is cheap

Good tests can last a long time; continuing use
as code evolves

35

Testing Laws with QuickCheck

36

Lawful Programming:

Informal description:
“map applies its first argument to every element in its
second argument …”

Type signature:
map :: (a -> b) -> [a] -> [b]

Laws:
 Normally in the form of equalities between expressions …

How can we give useful information about a
function without necessarily having to give all
the details of its definition?

37

Algebra of Lists:

(++) is associative with unit []
xs ++ (ys ++ zs) = (xs ++ ys) ++ zs

[] ++ xs = xs = xs ++ []

map preserves identities, distributes over
composition and concatenation:

map id = id

map (f . g) = map f . map g

map f (xs ++ ys) = map f xs ++ map f ys

38

… continued:

filter distributes over concatenation
filter p (xs ++ ys) = filter p xs ++ filter p ys

filter and map:
filter p . map f = map f . filter (p . f)

composing filters:
filter p . filter q = filter r

where r x = q x && p x

39

Uses for Laws:

Laws can be used:

To capture/document deep intuitions about
program behavior

To support reasoning about program
behavior

To optimize or transform programs (either
by hand, or in a compiler)

As properties to be tested

As properties to be proved

40

Wanted! Reward!

However: In the short-term, programmers
don’t see any reward for writing laws …

… so they won’t write them.

If programmers can derive some benefit
from writing laws, then perhaps they will do
it …

41

Laws for Merge:

What laws might we formulate for merge?

 If xs and ys are sorted, then merge xs ys is
sorted

 merge (sort xs) (sort ys) should be sorted

 merge xs ys == merge ys xs

 merge xs xs == xs

 …

42

From Laws to Functions:

mergeProp1 :: [Int] -> [Int] -> Bool

mergeProp1 xs ys = sorted xs ==>

sorted ys ==>

sorted (merge xs ys)

(==>) :: Bool -> Bool -> Bool

x ==> y = not x || y

sorted :: [Int] -> Bool

sorted xs = and [x <= y | (x,y) <- zip xs (tail xs)]

43

Testing mergeProp1:

Main> mergeProp1 [1,4,7] [2,4,6]

True

Main> mergeProp1 [1,4,7] [2,4,1]

True

Main> sorted [1,4,7]

True

Main> sorted [2,4,1]

False

Main>
Question: to test , I wrote more code …

If I don’t trust my programming skills, why am I
writing even more (untrustworthy) code?

44

Formulate More Tests!

import List(sort)

sortSorts :: [Int] -> Bool

sortSorts xs = sorted (sort xs)

sortedEmpty :: Bool

sortedEmpty = sorted []

sortIdempotent :: [Int] -> Bool

sortIdempotent xs = sort (sort xs) == sort xs

45

More Laws to Functions:

mergePreservesOrder :: [Int] -> [Int] -> Bool

mergePreservesOrder xs ys

= sorted (merge (sort xs) (sort ys))

mergeCommutes :: [Int] -> [Int] -> Bool

mergeCommutes xs ys

= merge us vs == merge vs us

where us = sort xs

vs = sort ys

etc...

46

Testing mergeProp1:

Main> mergeCommutes [1,4,7] [2,4,6]

True

Main> mergeCommutes [1,4,7] [2,4,1]

True

Main> mergePreservesOrder [1,4,7] [2,4,6]

True

Main> mergePreservesOrder [1,4,7] [2,4,1]

True

Main>

47

Automated Testing:

Of course, we can run as many individual test
cases as we like:
 Pick a test case

 Execute the program

 Compare actual result with expected result

Wouldn’t it be nice if the environment could help
us to go directly from properties to tests?

Wouldn’t it be nice if the environment could run
the tests for us automatically too?

48

QuickCheck:

This is a job for QuickCheck!

“QuickCheck: A Lightweight Tool for Random
Testing of Haskell Programs” by Koen Claessen
and John Hughes, Chalmers University, Sweden.
(Published at ICFP 2000)

In GHC/Hugs: import Test.QuickCheck

49

Lawful Programming:

reverse :: [a] -> [a]

reverse xs = …

{- reverse satisfies the following:

reverse (xs ++ ys)

==

reverse ys ++ reverse xs

-}

50

Lawful Programming:

reverse :: [a] -> [a]

reverse xs = …

prop_RevApp xs ys

= reverse (xs++ys)

==

reverse ys ++ reverse xs

Laws are type checked as
part of the main program

source text

If the laws and the code
are inconsistent, then an
error will be detected!

51

Running QuickCheck:

Prelude> :load reverse.hs

12345678910111213141516171819202122OK, passed 100 tests

Main>

Main> reverse [1,2,3]

[3,2,1]

Main> quickCheck prop_RevApp

52

Not All Laws are True:

Main> quickCheck (\b -> b == not b)

Falsifiable, after 0 tests:

True

Main>

Sometimes this points to a bug in the program.

Sometimes this points to a bug in the law.

53

quickCheck :: Testable a => a -> IO a

instance Testable Bool where …

instance (Arbitrary a,

Show a,

Testable b)=> Testable (a -> b)

where …

Indicates an ability to generate
arbitrary values of type a.

The Testable Class:

54

quickCheck :: Testable a => a -> IO a

instance Testable Bool where …

instance (Arbitrary a,

Show a,

Testable b)=> Testable (a -> b)

where …

Indicates an ability to display
arguments for counter examples

The Testable Class:

55

Generating Arbitrary Values:

class Arbitrary a where

arbitrary :: Gen a

instance Arbitrary ()

instance Arbitrary Bool

instance Arbitrary Int

instance Arbitrary Integer

instance Arbitrary Float

instance Arbitrary Double

instance (Arbitrary a, Arbitrary b) => Arbitrary (a,b)

instance Arbitrary a => Arbitrary [a]

arbitrary is a
generator of random

values

56

Main> quickCheck prop_revApp

OK, passed 100 tests.

Main> quickCheck (prop_revApp [1,2,3])

OK, passed 100 tests.

Main>

If you don’t give a specific value for an
argument, quickCheck will generate
arbitrary (i.e. random) values for you.

Quantified or Parameterized?

57

QuickCheck-ing merge:

Main> quickCheck mergeCommutes

OK, passed 100 tests.

Main> quickCheck mergePreservesOrder

OK, passed 100 tests.

Main>

So far, so good …

58

Continued …

mergeProp1 :: [Int] -> [Int] -> Bool

mergeProp1 xs ys = sorted xs ==>

sorted ys ==>

sorted (merge xs ys)

What happens?

Main> quickCheck mergeProp1

Falsifiable, after 7 tests:

[-1,-5,5,4,3,-5]

[5,-6,2,6,-6,0]

Main>

Huh?

59

What went wrong?

Main> sorted [-1,-5,5,4,3,-5]

False

Main> sorted [5,-6,2,6,-6,0]

False

Main> sorted (merge [-1,-5,5,4,3,-5] [5,-6,2,6,-6,0])

False

Main> False ==> False ==> False

False

Main> False ==> (False ==> False)

True

Main>

60

A Fix! (in fact, infix)

infixr ==>

(==>) :: Bool -> Bool -> Bool

x ==> y = not x || y

What happens?

Main> quickCheck mergeProp1

OK, passed 100 tests.

Main>

Hooray!!!

61

Are we Happy Now?

mergeProp1 :: [Int] -> [Int] -> Bool

mergeProp1 xs ys = sorted xs ==>

sorted ys ==>

sorted (merge xs ys)

100 tests passed!

But how many of them were trivial (i.e., one or both
arguments unsorted)?

62

Understanding Test Results:

Use the collect combinator:
mergeProp1sorted xs ys

= collect (sorted xs, sorted ys) (mergeProp1 xs ys)

Testing:
Main> quickCheck mergeProp1sorted

OK, passed 100 tests.

45% (False,False).

25% (True,True).

20% (True,False).

10% (False,True).

Main>

63

Understanding Test Results:

Or use the classify combinator:
mergeProp1long xs ys

= classify (length xs > 10) "long"

$ classify (length xs <= 5) "short"

$ mergeProp1 xs ys

Testing:
Main> quickCheck mergeProp1long

OK, passed 100 tests.

49% short.

29% long.

Main>

64

Understanding ==>:

The real (==>) operator is not a standard
“implies” function of type Bool -> Bool -> Bool

When we test a property p ==> q, QuickCheck
will try to find 100 test cases for which p is true,
and will test q in each of those 100 cases

If it tries 1000 candidates without finding enough
solutions, then it will give up:
Main> quickCheck (\b -> (b == not b) ==> b)

Arguments exhausted after 0 tests.

Main>

QuickCheck can be configured to use different
numbers of tests/attempts

65

Writing Custom Generators:

Instead of generating random values and
selecting only some, we can try to generate
the ones we want directly:

sortedList :: Gen [Int]

sortedList = do ns <- arbitrary

return (sort ns)

66

More Examples:

Now we can use QuickCheck’s forAll combinator to define:

prop_mergePreservesOrder = forAll sortedList $ \xs ->

forAll sortedList $ \ys ->

sorted (merge xs ys)

prop_mergeCommutes = forAll sortedList $ \xs ->

forAll sortedList $ \ys ->

merge xs ys == merge
ys xs

prop_mergeIdempotent = forAll sortedList $ \xs ->

merge xs xs == xs

67

Lessons Learned:

QuickCheck is a useful and lightweight tool that
encourages and rewards the lawful programmer!

There is a script that automatically runs
quickCheck on all of the properties in a file that
have names of the form prop_XXX

Interpreting test results may require some care …

“Good” (random) test data can be hard to find …

