CS 457/557: Functional Languages

Lists and Algebraic Datatypes

Mark P Jones
Portland State University
Why Lists?

- Lists are a heavily used data structure in many functional programs

- Special syntax is provided to make programming with lists more convenient

- Lists are a special case / an example of:
 - An algebraic datatype (coming soon)
 - A parameterized datatype (coming soon)
 - A monad (coming, but a little later)
Naming Convention:

- We often use a simple naming convention:
- If a typical value in a list is called x, then a typical list of such values might be called xs (i.e., the plural of x)
- ... and a list of lists of values called x might be called xss
- A simple convention, minimal clutter, and a useful mnemonic too!
Prelude Functions:

(++) :: [a] -> [a] -> [a]
reverse :: [a] -> [a]
take :: Int -> [a] -> [a]
drop :: Int -> [a] -> [a]
takeWhile :: (a -> Bool) -> [a] -> [a]
dropWhile :: (a -> Bool) -> [a] -> [a]
replicate :: Int -> a -> [a]
iterate :: (a -> a) -> a -> [a]
repeat :: a -> [a]

...
Constructor Functions:

- What if you can’t find a function in the prelude that will do what you want to do?

- Every list takes the form:
 - [], an empty list
 - (x:xs), a non-empty list whose first element is x, and whose tail is xs

- Equivalently: the list type has two constructor functions:
 - The constant [] :: [a]
 - The operator (:) :: a -> [a] -> [a]

- Using “pattern matching”, we can also take lists apart ...
Functions on Lists:

null :: [a] -> Bool
null [] = True
null (x:xs) = False

head :: [a] -> a
head (x:xs) = x

tail :: [a] -> [a]
tail (x:xs) = xs
Recursive Functions:

last :: [a] -> a
last (x:[]) = x
last (x:y:xs) = last (y:xs)

init :: [a] -> [a]
init (x:[]) = []
init (x:y:xs) = x : init (y:xs)

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs
... continued:

\[
\begin{align*}
\text{inits} &:: [a] \rightarrow [[][a]] \\
\text{inits } [] & = [[]] \\
\text{inits } (x:xs) & = [] : \text{map } (x:) (\text{inits } xs)
\end{align*}
\]

\[
\begin{align*}
\text{subsets} &:: [a] \rightarrow [[][a]] \\
\text{subsets } [] & = [[]] \\
\text{subsets } (x:xs) & = \text{subsets } xs \quad ++ \text{ map } (x:) (\text{subsets } xs)
\end{align*}
\]
Why Does This Work?

- What does it mean to say that
 \[\text{[]} \] and (:) are the constructor functions for lists?

- **No Junk:** every list value is equal either to
 \[\text{[]} \], or else to a list of the form (x:xs)
 (ignoring non-termination, for now)

- **No Confusion:** if \(x \neq y \), or \(xs \neq ys \), then
 \(x:xs \neq y:ys \)

- A pair of equations
 \[
 \begin{align*}
 f ([]) &= \ldots \\
 f (x:xs) &= \ldots
 \end{align*}
 \]
 defines a unique function on list values
Algebraic Datatypes:
Algebraic Datatypes:

- Booleans and Lists are both examples of “algebraic datatypes”:
 - No Junk:
 - Every Boolean value can be constructed using either False or True
 - Every list can be described using (a combination of) [] and (:)
 - No Confusion:
 - True ≠ False
 - [] ≠ (x:xs) and if (x:xs)=(y:ys), then x=y and xs=ys
In Haskell Notation:

data Bool = False | True

introduces:
- A type, Bool
- A constructor function, False :: Bool
- A constructor function, True :: Bool

data List a = Nil | Cons a (List a)

introduces
- A type, List t, for each type t
- A constructor function, Nil :: List a
- A constructor function, Cons :: a -> List a -> List a
More Enumerations:

\[\textbf{data \ Rainbow} = \text{Red | Orange | Yellow} \]
\[\quad | \text{Green | Blue | Indigo | Violet}\]

introduces:

- A type, \(\text{Rainbow}\)
- A constructor function, \(\text{Red :: Rainbow}\)
- ...
- A constructor function, \(\text{Violet :: Rainbow}\)

\underline{No Junk:} Every value of type Rainbow is one of the above seven colors

\underline{No Confusion:} The seven colors above are distinct values of type Rainbow
More Recursive Types:

```haskell
data Shape = Circle Radius
            | Polygon [Point]
            | Transform Transform Shape
```

```haskell
data Transform
     = Translate Point
     | Rotate Angle
     | Compose Transform Transform
```

introduces:
- Two types, Shape and Transform
- Circle :: Radius -> Shape
- Polygon :: [Point] -> Shape
- Transform :: Transform -> Shape -> Shape
- ...
More Parameterized Types:

```haskell
data Maybe a = Nothing | Just a
```

introduces:
- A type, `Maybe t`, for each type `t`
- A constructor function, `Nothing :: Maybe a`
- A constructor function, `Just :: a -> Maybe a`

```haskell
data Pair a b = Pair a b
```

introduces:
- A type, `Pair t s`, for any types `t` and `s`
- A constructor function `Pair :: a -> b -> Pair a b`
General Form:

Algebraic datatypes are introduced by top-level definitions of the form:

\[
data \ T \ a_1 \ldots \ a_n = c_1 \mid \ldots \mid c_m
\]

where:

- \(T \) is the type name (must start with a capital letter)
- \(a_1, \ldots, a_n \) are (distinct) (type) arguments/parameters/variables (must start with lower case letter) \((n \geq 0)\)
- Each of the \(c_i \) is an expression \(F_i \ t_1 \ldots t_k \) where:
 - \(t_1, \ldots, t_k \) are type expressions that (optionally) mention the arguments \(a_1, \ldots, a_n \)
 - \(F_i \) is a new constructor function \(F_i :: t_1 \rightarrow \ldots \rightarrow t_p \rightarrow T \ a_1 \ldots a_n \)
 - The \textbf{arity} of \(F_i \), \(k \geq 0 \)

Quite a lot for a single definition!
No Junk and Confusion:

- **No Junk**: Every value of type $T\ a_1 \ldots \ a_n$ can be written in the form $F_i \ e_1 \ldots \ e_k$ for some choice of constructor F_i and (appropriately typed) arguments e_1, \ldots, e_k

- **No Confusion**: Distinct constructors or distinct arguments produce distinct results

These are fundamental assumptions that we make when we write and/or reason about functional programs.
Pattern Matching:

In addition to introducing a new type and a collection of constructor functions, each data definition also adds the ability to pattern match over values of the new type.

For example, given

```
data Maybe a = Nothing | Just a
```

then we can define functions like the following:

```
orElse :: Maybe a -> a -> a
Just x `orElse` y = x
Nothing `orElse` y = y
```
Pattern Matching & Substitution:

The result of a pattern match is either:

- A failure
- A success, accompanied by a substitution that provides a value for each of the values in the pattern

Examples:

- `[]` does not match the pattern `(x:xs)`
- `[1,2,3]` matches the pattern `(x:xs)` with `x=1` and `xs=[2,3]`
Patterns:

More formally, a pattern is either:

- An identifier
 - Matches any value, binds result to the identifier

- An underscore (a “wildcard”)
 - Matches any value, discards the result

- A constructed pattern of the form $C \ p_1 \ldots \ p_n$, where C is a constructor of arity n and p_1, \ldots, p_n are patterns of the appropriate type
 - Matches any value of the form $C \ e_1 \ldots \ e_n$, provided that each of the e_i values matches the corresponding p_i pattern.
Other Pattern Forms:

For completeness:

- "Sugared" constructor patterns:
 - Tuple patterns \((p_1, p_2)\)
 - List patterns \([p_1, p_2, p_3]\)
 - Strings, for example: "hi" = ('h' : 'i' : [])

- Labeled patterns

- Numeric Literals:
 - Can be considered as constructor patterns, but the implementation uses equality (==) to test for matches

- "as" patterns, id@pat

- Lazy patterns, ~pat

- \((n+k)\) patterns
Function Definitions:

In general, a function definition is written as a list of adjacent equations of the form:

\[f \ p_1 \ldots \ p_n = \text{rhs} \]

where:
- \(f \) is the name of the function that is being defined
- \(p_1, \ldots, p_n \) are patterns, and \(\text{rhs} \) is an expression

All equations in the definition of \(f \) must have the same number of arguments (the “arity” of \(f \))
Given a function definition with m equations:

\[
\begin{align*}
 f \ p_{1,1} \ldots \ p_{n,1} &= \text{rhs}_1 \\
 f \ p_{1,2} \ldots \ p_{n,2} &= \text{rhs}_2 \\
 \vdots
 \\
 f \ p_{1,m} \ldots \ p_{n,m} &= \text{rhs}_m
\end{align*}
\]

The value of $f \ e_1 \ldots \ e_n$ is $S \ \text{rhs}_i$, where i is the smallest integer such that the expressions e_j match the patterns $p_{j,i}$ and S is the corresponding substitution.
Guards, Guards!

A function definition may also include guards (Boolean expressions):

\[f \; p_1 \; \ldots \; p_n \; | \; g_1 = rhs_1 \]
\[| \; g_2 = rhs_2 \]
\[| \; g_3 = rhs_3 \]

An expression \(f \; e_1 \; \ldots \; e_n \) will only match an equation like this if all of the \(e_i \) match the corresponding \(p_i \) and, in addition, at least one of the guards \(g_j \) is True.

In that case, the value is \(S \; rhs_j \), where \(j \) is the smallest index such that \(g_j \) is True.

(The prelude defines \texttt{otherwise = True :: Bool} for use in guards.)
Where Clauses:

- A function definition may also have a where clause:
 \[
 f \ p_1 \ldots \ p_n = \text{rhs} \quad \text{where} \quad \text{decls}
 \]

- Behaves like a let expression:
 \[
 f \ p_1 \ldots \ p_n = \text{let} \ \text{decls} \ \text{in} \ \text{rhs}
 \]

- Except that where clauses can scope across guards:
 \[
 f \ p_1 \ldots \ p_n \mid g_1 = \text{rhs}_1 \mid g_2 = \text{rhs}_2 \mid g_3 = \text{rhs}_3 \quad \text{where} \quad \text{decls}
 \]

- Variables bound here in decls can be used in any of the \(g_i \) or \(\text{rhs}_i \)
Example: filter

```
filter :: (a -> Bool) -> [a] -> [a]
filter p []   = []
filter p (x:xs)
  | p x        = x : rest
  | otherwise  = rest

where rest = filter p xs
```
Example: Binary Search Trees

```haskell
data Tree = Leaf | Fork Tree Int Tree

insert :: Int -> Tree -> Tree
insert n Leaf = Fork Leaf n Leaf
insert n (Fork l m r)
  | n <= m = Fork (insert n l) m r
  | otherwise = Fork l m (insert n r)

lookup :: Int -> Tree -> Bool
lookup n Leaf = False
lookup n (Fork l m r)
  | n < m = lookup n l
  | n > m = lookup n r
  | otherwise = True
```
Case Expressions:

Case expressions can be used for pattern matching:

```plaintext
case e of
  p_1 -> e_1
  p_2 -> e_2
  ...
  p_n -> e_n

Equivalent to:
let f p_1 = e_1
  f p_2 = e_2
  ...
  f p_n = e_n
in f e
```
... continued:

 Guards and where clauses can also be used in case expressions:

```haskell
filter p xs = case xs of
  [] -> []
  (x:xs) | p x -> x:ys
  | otherwise -> ys
where ys = filter p xs
```
If Expressions:

- If expressions can be used to test Boolean values:

  ```
  if e then e₁ else e₂
  ```

- Equivalent to:

  ```
  case e of
    True  -> e₁
    False -> e₂
  ```
Summary:

- Algebraic datatypes can support:
 - Enumeration types
 - Parameterized types
 - Recursive types
 - Products (composite/aggregate values); and
 - Sums (alternatives)

- Type constructors, Constructor functions, Pattern matching

- Unifying features: No junk, no confusion!
Example: transpose

\[
\text{transpose} :: [[a]] \rightarrow [[a]]
\]
\[
\text{transpose \[\] } = \[
\]
\[
\text{transpose \([\] : xss) } = \text{transpose xss}
\]
\[
\text{transpose \(\(x:xs\) : xss\)
 } = (x : [h | (h:t) <- xss])
 : \text{transpose (xs : [t | (h:t) <- xss]})
\]

Example:

\[
\text{transpose [[1,2,3],[4,5,6]] } = [[1,4],[2,5],[3,6]]
\]
Example: say

\texttt{Say> putStr (say "hello")}

\begin{verbatim}

H H EEEEEE L L OOO
H H E L L O O
HHHHH EEEEEE L L O O
H H E L L O O
H H EEEEEE LLLLL LLLLL OOO

Say>
\end{verbatim}
... continued:

```haskell
say = ('\n':)
  . unlines
  . map (foldr1 (\xs ys->xs++"  "++ys))
  . transpose
  . map picChar

picChar 'A' = [" A ",
              " A A ",
              "AAAAA",
              "A   A",
              "A   A",
              "A   A",
              " A A ",
              "A A A",
              "A A A"]

etc...
```
Composition and Reuse:

Say> (putStr . concat . map say . lines . say) "A"

```
  A
  A A
  AAAAA
  A A
  A A

  A
  A A
  AAAAA
  A A
  A A

  A A A A A A
  A A A A A A A A A A
  AAAAA AAAAA AAAAA AAAAA AAAAA
  A A A A A A A A A A
  A A A A A A A A A A

  A
  A A
  AAAAA
  A A
  A A

  A
  A A
  AAAAA
  A A
  A A

  A
  A A
  AAAAA
  A A
  A A

Say>
```