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Why Lists?

Lists are a heavily used data structure in many 
functional programs

Special syntax is provided to make programming 
with lists more convenient

Lists are a special case / an example of:
 An algebraic datatype (coming soon)

 A parameterized datatype (coming soon)

 A monad (coming, but a little later)
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Naming Convention:

We often use a simple naming convention:

If a typical value in a list is called x, then a 
typical list of such values might be called xs
(i.e., the plural of x)

… and a list of lists of values called x might 
be called xss

A simple convention, minimal clutter, and a 
useful mnemonic too!
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Prelude Functions:

(++) :: [a] -> [a] -> [a]

reverse :: [a] -> [a]

take :: Int -> [a] -> [a]

drop :: Int -> [a] -> [a]

takeWhile :: (a -> Bool) -> [a] -> [a]

dropWhile :: (a -> Bool) -> [a] -> [a]

replicate :: Int -> a -> [a]

iterate :: (a -> a) -> a -> [a]

repeat :: a -> [a]

…
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Constructor Functions:

What if you can‟t find a function in the prelude 
that will do what you want to do?

Every list takes the form:
 [], an empty list

 (x:xs), a non-empty list whose first element is x, and 
whose tail is xs

Equivalently: the list type has two constructor 
functions:
 The constant [] :: [a]

 The operator (:) :: a -> [a] -> [a]

Using “pattern matching”, we can also take lists 
apart …
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Functions on Lists:

null :: [a] -> Bool

null [] = True

null (x:xs) = False

head :: [a] -> a

head (x:xs) = x

tail :: [a] -> [a]

tail (x:xs) = xs
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Recursive Functions:

last :: [a] -> a

last (x:[]) = x

last (x:y:xs) = last (y:xs)

init :: [a] -> [a]

init (x:[]) = []

init (x:y:xs) = x : init (y:xs)

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x:xs) = f x : map f xs
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… continued:

inits :: [a] -> [[a]]

inits [] = [[]]

inits (x:xs) = [] : map (x:) (inits xs)

subsets :: [a] -> [[a]]

subsets [] = [[]]

subsets (x:xs) = subsets xs

++ map (x:) (subsets xs)

in List 
library

user 
defined
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Why Does This Work?

What does it mean to say that [] and (:)
are the constructor functions for lists?

No Junk: every list value is equal either to 
[], or else to a list of the form (x:xs)
(ignoring non-termination, for now)

No Confusion: if x y, or xs ys, then
x:xs y:ys

A pair of equations f []       = …
f (x:xs) = …

defines a unique function on list values
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Algebraic Datatypes:
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Algebraic Datatypes:

Booleans and Lists are both examples of 
“algebraic datatypes”:

No Junk:
 Every Boolean value can be constructed using either 

False or True

 Every list can be described using (a combination of) []
and (:)

No Confusion:
 True False

 [] (x:xs) and if (x:xs)=(y:ys), then x=y and xs=ys
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In Haskell Notation:

data Bool = False | True
introduces:
 A type, Bool

 A constructor function, False :: Bool

 A constructor function, True :: Bool

data List a = Nil | Cons a (List a)
introduces
 A type, List t, for each type t

 A constructor function, Nil :: List a

 A constructor function, Cons :: a -> List a -> List a
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More Enumerations:

data Rainbow = Red | Orange | Yellow 
| Green | Blue | Indigo | Violet

introduces:

 A type, Rainbow

 A constructor function, Red :: Rainbow

 …

 A constructor function, Violet :: Rainbow

No Junk: Every value of type Rainbow is one of the 
above seven colors

No Confusion: The seven colors above are distinct 
values of type Rainbow
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More Recursive Types:

data Shape = Circle Radius
| Polygon [Point]
| Transform Transform Shape

data Transform
= Translate Point
| Rotate Angle
| Compose Transform Transform

introduces:

 Two types, Shape and Transform

 Circle :: Radius -> Shape

 Polygon :: [Point] -> Shape

 Transform :: Transform -> Shape -> Shape

 …
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More Parameterized Types:

data Maybe a = Nothing | Just a

introduces:
 A type, Maybe t, for each type t

 A constructor function, Nothing :: Maybe a

 A constructor function, Just :: a -> Maybe a

data Pair a b = Pair a b

introduces
 A type, Pair t s, for any types t and s

 A constructor function Pair :: a -> b -> Pair a b
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General Form:

Algebraic datatypes are introduced by top-level definitions of 
the form:

data T a1 … an = c1 | … | cm

where:

 T is the type name (must start with a capital letter)

 a1, …, an are (distinct) (type) arguments/parameters/ 
variables (must start with lower case letter) (n 0)

 Each of the ci is an expression Fi t1 … tk where:
 t1, …, t

k
are type expressions that (optionally) mention the 

arguments a1, …, an

 Fi is a new constructor function Fi :: t1 -> … -> tp -> T a1 … an

 The arity of Fi, k 0

Quite a lot for a single definition!
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No Junk and Confusion:

The key properties that are shared by all 
algebraic datatypes:
 No Junk:  Every value of type T a1 … an can be 

written in the form Fi e1 … ek for some choice of 
constructor Fi and (appropriately typed) 
arguments e1, …, ek

 No Confusion:  Distinct constructors or distinct 
arguments produce distinct results

These are fundamental assumptions that 
we make when we write and/or reason 
about functional programs.
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Pattern Matching:

In addition to introducing a new type and a 
collection of constructor functions, each data 
definition also adds the ability to pattern match
over values of the new type

For example, given

data Maybe a = Nothing | Just a

then we can define functions like the following:

orElse :: Maybe a -> a -> a

Just x    `orElse` y = x

Nothing `orElse` y = y
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Pattern Matching & Substitution:

The result of a pattern match is either:
 A failure

 A success, accompanied by a substitution 
that provides a value for each of the 
values in the pattern

Examples:
 [] does not match the pattern (x:xs)

 [1,2,3] matches the pattern (x:xs) with 
x=1 and xs=[2,3]
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Patterns:

More formally, a pattern is either:

An identifier
 Matches any value, binds result to the identifier

An underscore (a “wildcard”)
 Matches any value, discards the result

A constructed pattern of the form C p1 … pn, 
where C is a constructor of arity n and p1, … ,pn

are patterns of the appropriate type
 Matches any value of the form C e1 … en, provided that 

each of the ei values matches the corresponding pi

pattern.
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Other Pattern Forms:

For completeness:

“Sugared” constructor patterns: 
 Tuple patterns (p1,p2)

 List patterns [p1, p2, p3]

 Strings, for example: "hi" = („h‟ : „i‟ : [])

Labeled patterns

Numeric Literals:
 Can be considered as constructor patterns, but the 

implementation uses equality (==) to test for matches

“as” patterns, id@pat

Lazy patterns, ~pat

(n+k) patterns
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Function Definitions:

In general, a function definition is written 
as a list of adjacent equations of the form:

f p1 … pn = rhs

where:
 f is the name of the function that is being 

defined

 p1, …, pn are patterns, and rhs is an expression

All equations in the definition of f must 
have the same number of arguments (the 
“arity” of f)
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… continued:

Given a function definition with m 
equations:

f p1,1 … pn,1 = rhs1

f p1,2 … pn,2 = rhs2

…

f p1,m … pn,m = rhsm

The value of f e1 … en is S rhsi, where i is 
the smallest integer such that the 
expressions ej match the patterns pj,i and S
is the corresponding substitution.
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Guards, Guards!

A function definition may also include guards 
(Boolean expressions):

f p1 … pn | g1 = rhs1

| g2 = rhs2

| g3 = rhs3

An expression f e1 … en will only match an 
equation like this if all of the ei match the 
corresponding pi and, in addition, at least one of 
the guards gj is True

In that case, the value is S rhsj, where j is the 
smallest index such that gj is True

(The prelude defines otherwise = True :: Bool for 
use in guards.)
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Where Clauses:

A function definition may also a where clause:

f p1 … pn = rhs
where decls

Behaves like a let expression:

f p1 … pn = let decls in rhs

Except that where clauses can scope across 
guards:

f p1 … pn   | g1 = rhs1

| g2 = rhs2

| g3 = rhs3

where decls

Variables bound here in decls can be used in any 
of the gi or rhsi
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Example: filter

filter :: (a -> Bool) -> [a] -> [a]

filter p [] = []

filter p (x:xs)

| p x = x : rest

| otherwise = rest

where rest = filter p xs
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Example: Binary Search Trees

data Tree = Leaf | Fork Tree Int Tree

insert :: Int -> Tree -> Tree

insert n Leaf = Fork Leaf n Leaf

insert n (Fork l m r)
| n <= m = Fork (insert n l) m r
| otherwise = Fork l m (insert n r)

lookup :: Int -> Tree -> Bool

lookup n Leaf = False

lookup n (Fork l m r)

| n < m = lookup n l

| n > m = lookup n r

| otherwise = True
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Case Expressions:

Case expressions can be used for pattern 
matching:

case e of
p1 -> e1

p2 -> e2

…
pn -> en

Equivalent to:
let f p1 = e1

f p2 = e2

…
f pn = en

in f e
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… continued:

Guards and where clauses can also be used 
in case expressions:

filter p xs = case xs of

[] -> []

(x:xs) | p x -> x:ys

| otherwise -> ys

where ys = filter p xs
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If Expressions:

If expressions can be used to test Boolean 
values:

if e then e1 else e2

Equivalent to:

case e of

True -> e1

False -> e2
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Summary:

Algebraic datatypes can support:
 Enumeration types

 Parameterized types

 Recursive types

 Products (composite/aggregate values); and

 Sums (alternatives)

Type constructors, Constructor functions, 
Pattern matching

Unifying features: No junk, no confusion!
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Example: transpose

transpose :: [[a]] -> [[a]]

transpose [] = []

transpose ([] : xss)   = transpose xss

transpose ((x:xs) : xss)
= (x : [h | (h:t) <- xss])

: transpose (xs : [ t | (h:t) <- xss])

Example:

transpose [[1,2,3],[4,5,6]] = [[1,4],[2,5],[3,6]]
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Example: say

Say> putStr (say "hello")

H   H  EEEEE  L      L       OOO 

H   H  E      L      L      O   O

HHHHH  EEEEE  L      L      O   O

H   H  E      L      L      O   O

H   H  EEEEE  LLLLL  LLLLL   OOO 

Say> 
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… continued:

say = ('\n':)

. unlines

. map (foldr1 (\xs ys->xs++"  "++ys))

. transpose

. map picChar

picChar 'A' = ["  A  ",

" A A ",

"AAAAA",

"A   A",

"A   A"]

etc…
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Composition and Reuse:

Say> (putStr . concat . map say . lines . say) "A"

A                

A A               

AAAAA              

A   A              

A   A              

A             A         

A A           A A        

AAAAA         AAAAA       

A   A         A   A       

A   A         A   A       

A      A      A      A      A  

A A    A A    A A    A A    A A 

AAAAA  AAAAA  AAAAA  AAAAA  AAAAA

A   A  A   A  A   A  A   A  A   A

A   A  A   A  A   A  A   A  A   A

A                           A  

A A                         A A 

AAAAA                       AAAAA

A   A                       A   A

A   A                       A   A

A                           A  

A A                         A A 

AAAAA                       AAAAA

A   A                       A   A

A   A                       A   A

Say> 


