CS 457/557: Functional
Languages

Lists and Algebraic Datatypes

Mark P Jones
Portland State University



Why Lists?

# Lists are a heavily used data structure in many
functional programs

# Special syntax is provided to make programming
with lists more convenient

# Lists are a special case / an example of:
= An algebraic datatype (coming soon)
= A parameterized datatype (coming soon)
= A monad (coming, but a little later)




Naming Convention:

# We often use a simple naming convention:

# If a typical value in a list is called x, then a
typical list of such values might be called xs
(i.e., the plural of x)

# ... and a list of lists of values called x might
be called xss

# A simple convention, minimal clutter, and a
useful mnemonic too!

3



Prelude Functions:

(++) ::[a]
reverse :: [a] a)
o Int -> [a] ->
: Int -> [a] ->

take
drop
takeWhile ::
dropWhile ::
replicate
iterate

repeat

-> [a] -> [a]

-> [a’

(a -> B-oc-)l) >
(a -> Bool) ->

El
2
El

: Int-> a -> [a]
:(@a->a)->a->|[a]
v a-> [a]

a,




Constructor Functions:

# What if you can't find a function in the prelude
that will do what you want to do?

# Every list takes the form:
= [], an empty list

= (X:xs), a nhon-empty list whose first element is x, and
whose tail is xs

# Equivalently: the list type has two constructor
functions:

= The constant [] :: [&]
= The operator (:) :: a -> [a] -> [&]

# Using “pattern matching”, we can also take lists
apart ... 5



Functions on Lists:

nul
nul
nul

:: [a] -> Bool
[] = True
(x:xs) = False

head :: [a] -> a
head (X:Xs) = X

tail

2 [a] -> [a]

tail (x:xs) = xs



Recursive Functions:

last : [a] -> a

last (X:[]) = X

last (X:y:Xs) = last (y:Xs)

init . [a] -> [@]

init (x:[]) =[]

init (X:y:xs) = X : init (y:Xxs)
map : (@a->Db)->[a] -> [b]
map f [} =[]

map f (X:Xs) —fx: map f xs



... continued:

inits : [a] -> [[a]] _—
Inits [] = []] library
inits (Xx:xs) =[] : map (x:) (inits xs)
subsets .. [a] -> [[a]] \
subsets [] = [[]] defiunseecrl
subsets (x:xs) = subsets xs

++ map (X:) (subsets xs) |

8



Why Does This Work?

# What does it mean to say that [] and (:)
are the constructor functions for lists?

# No Junk: every list value is equal either to
[], or else to a list of the form (Xx:xs)
(ignoring non-termination, for now)

# No Confusion: if x=y, or xs=ys, then
X:XS # Y:iYS

# A pair of equations f [] = ...
f (x:xs) = ...
defines a unique function on list values |



Algebraic Datatypes:

10



Algebraic Datatypes:

# Booleans and Lists are both examples of
“algebraic datatypes”:

# No Junk:

= Every Boolean value can be constructed using either
False or True

s Every list can be described using (a combination of) []
and (:)

# No Confusion:
= True = False
s []# (X:xs) and if (x:xs)=(y:ys), then x=y and xs=ys

11



In Haskell Notation:

data Bool = False | True
introduces:

= A type, Bool
= A constructor function, False :: Bool
= A constructor function, True :: Bool

data List a = Nil | Cons a (List a)
introduces

m Atype, List t, for each type t
= A constructor function, Nil :: List a

= A constructor function, Cons :: a -> List a -> List a
12



More Enumerations:

data Rainbow = Red | Orange | Yellow
| Green | Blue | Indigo | Violet

introduces:
= A type, Rainbow
= A constructor function, Red :: Rainbow

= A constructor function, Violet :: Rainbow

No Junk: Every value of type Rainbow is one of the
above seven colors

No Confusion: The seven colors above are distinct
values of type Rainbow

13



More Recursive Types.:

data Shape = Circle Radius
| Polygon [Point]
| Transform Transform Shape

data Transform
= Translate Point
| Rotate Angle
| Compose Transform Transform

introduces:
= Two types, Shape and Transform
= Circle :: Radius -> Shape
= Polygon :: [Point] -> Shape
= Transform :: Transform -> Shape -> Shape
m ... 14



More Parameterized Types:

data Maybe a = Nothing | Just a

introduces:
= A type, Maybe t, for each type t
= A constructor function, Nothing :: Maybe a
= A constructor function, Just :: a -> Maybe a

data Pairab =Pairab

introduces
= Atype, Pairts, for any types t and s
s A constructor function Pair ::a->b->Pairab

15



General Form:

Algebraic datatypes are introduced by top-level definitions of
the form:

dataTa,..a,=¢|..|cC,
where:
= T is the type name (must start with a capital letter)

= 3, ..., @, are (distinct) (type) arguments/parameters/
variables (must start with lower case letter) (n>0)
s Each of the ¢ is an expression F; t; ... t, where:

*ty, ..., t _aretype expressions that (optionally) mention the
arguments ay, ..., a,

+ Fis a new constructor function F, :: t; -> ... ->t,->Ta, ... a,
+ The arity of F;, k>0

Quite a lot for a single definition!
16



No Junk and Confusion:

# The key properties that are shared by all
algebraic datatypes:

s No Junk: Every value of type T a;, ... a, can be
written in the form F, e, ... e, for some choice of
constructor F, and (appropriately typed)
arguments ey, ..., €,

= No Confusion: Distinct constructors or distinct
arguments produce distinct results

# These are fundamental assumptions that
we make when we write and/or reason
about functional programs.

17



Pattern Matching:

# In addition to introducing a new type and a
collection of constructor functions, each data
definition also adds the ability to pattern match
over values of the new type

# For example, given
data Maybe a = Nothing | Just a
then we can define functions like the following:

orElse . Maybea->a->a
Justx “orElse’ y =X
Nothing "orElse’ y =y

18



Pattern Matching & Substitution:

# The result of a pattern match is either:
= A failure

= A success, accompanied by a substitution
that provides a value for each of the
values in the pattern

#® Examples:
= [] does not match the pattern (x:xs)

s [1,2,3] matches the pattern (x:xs) with
x=1 and xs=[2,3]

19



Patterns:

More formally, a pattern is either:
# An identifier

= Matches any value, binds result to the identifier

# An underscore (a “wildcard”)
= Matches any value, discards the result

# A constructed pattern of the form C p, ... p,,
where C is a constructor of arity n and p;, ... ,p,
are patterns of the appropriate type

= Matches any value of the form C e, ... e,, provided that
each of the e, values matches the corresponding p.
pattern.

20



Other Pattern Forms:

For completeness:

# “Sugared” constructor patterns:

= Tuple patterns (p,,p,)
= List patterns [py, p,, Psl
= Strings, for example: "hi" = Ch’ : " : [1)

# Labeled patterns

# Numeric Literals:

= Can be considered as constructor patterns, but the
implementation uses equality (==) to test for matches

# “as” patterns, id@pat
# Lazy patterns, ~pat
# (n+k) patterns

21



Function Definitions:

# In general, a function definition is written
as a list of adjacent equations of the form:

fp,..p,=rhs
where:
= fis the name of the function that is being
defined

= Py, ..., P, @re patterns, and rhs is an expression

# All equations in the definition of f must
have the same number of arguments (the

“arity” of f)

22



... continued:

# Given a function definition with m
equations:

pr1 e Ppy = rhs,
f Piy .- Pn2 = rhs,

f Pim - Phm = rhs.,

# The value of f e, ... ,is S rhs, where i is
the smallest integer such that the
expressions €; match the patterns p;; and S
is the corresponding substitution. -



Guards, Guards!

# A function definition may also include guards
(Boolean expressions):

fpy..p, | g, = rhs,
gz — r152
g3 — I"IS3

@ An expression f e; ... e, will only match an
equation like this if all of the e, match the
corresponding p; and, in addition, at least one of
the guards g; is True

# In that case, the value is S rhs;, where j is the
smallest index such that g; is True

# (The prelude defines otherwise = True :: Bool for
use in guards.) -




Where Clauses:

# A function definition may also a where clause:

fp;...p, =rhs
where decls

# Behaves like a let expression:
f p; ... p, = let decls in rhs
# Except that where clauses can scope across

guards:
fpy... P, g, = rhs,
gz — r152
93 — I"\S3
where decls

# Variables bound here in decls can be used in any
of the g; or rhs, 25



Example: filter

filter :: (a -> Bool) -> [a] -> [&]
filter p [] =[]
filter p (X:Xxs)

D X = X : rest

otherwise = rest

where rest = filter p xs

26



Example: Binary Search Trees

data Tree

Insert
insert n Leaf
insert n (Fork I mr)

0]0)
0]0)
0]0)

| n<=m

= Leaf | Fork Tree Int Tree

: Int -> Tree -> Tree
= Fork Leaf n Leaf

= Fork (insertnl) mr

| otherwise = Fork | m (insert n r)

KUp
Kup n Leaf

n<m
n>m
otherwise

. Int -> Tree -> Bool
= False

kup n (Fork I mr)

= lookup n |
= lookup nr
= True

27



Case Expressions:

# (Case expressions can be used for pattern
matching:

case e of
P -> €4
P, -> €,

P -~ €,

# Equivalent to:

Ietfp]_:el
fp,=¢
fpn =6,

infe

28



... continued:

# Guards and where clauses can also be used
IN case expressions:

filter p xs = case xs of
[] -> ]
(X:xS) | p X -> X:YS
| otherwise -> ys
where ys = filter p xs

29



If Expressions:

# [If expressions can be used to test Boolean
values:
if e then e, else e,

# Equivalent to:
case ¢ of

True -> ¢4

False -> e,

30



Summary:

# Algebraic datatypes can support:
= Enumeration types

Parameterized types
Recursive types

Products (composite/aggregate values); and

= Sums (alternatives)

# Type constructors, Constructor functions,
Pattern matching

# Unifying features: No junk, no confusion!

31



Example: transpose

transpose : [[a]] -> [[a]]
transpose [] =[]
transpose ([] : xss) = transpose Xss

transpose ((X:Xs) : XSS)
= (X : [h ]| (h:t) <-xss])
: transpose (xs : [ t | (h:t) <- xss])

Example:

transpose [[1,2,3],[4,5,6]] = [[1,4],[2,5],[3,6]]

32



Example: say

Say> putStr (say "hello")

H H EEEEE L L
H H E L L
HHHHH EEEEE L L
H H E L L

H H EEEEFE LLLLL LLLLL

say>

O
O
O

000

000

O
O
O

33



... continued:

say = ("\n':)
unlines
map (foldrl
transpose

map picChar

(\xs ys—->xs++"

picChar 'A' = [" A ",
"A A",
"AAAAA",
"A A",
"A A"

etc...

"++vs))

34



omposition and Reuse:

A
A A
AAAAA
A A
A A

A A
AAAAA
A A
A A

A A
AAAAA
A A
A A

say> (putStr . concat
A
A A
AAAAA
A A
A A
A A
A A A A
AAAAA AAAAA
A A A A
A A A A
A A A A
A A A A A A A A
AAAAA AAAAA AAAAA AAAAA
A A A A A A A A
A A A A A A A A
A
A A
AAAAA
A A
A A
A
A A
AAAAA
A A
A A

Say>

map say

lines

say)

"Z&Vl

35



