
1

CS 457/557: Functional
Languages

Leveraging Laziness

Mark P Jones

Portland State University

Lazy Evaluation:

With a lazy evaluation strategy:

–! Don’t evaluate until you have to

–! When you do evaluate, save the result so that you can
use it again next time …

Why use lazy evaluation?

–! Avoids redundant computation

–! Eliminates special cases (e.g., && and ||)

–! Facilitates reasoning

Lazy evaluation encourages:

–! Programming in a compositional style

–! Working with “infinite data structures”

–! Computing with “circular programs”

Compositional Style:

Separate aspects of program behavior
separated into independent components

fact n = product [1..n]

sumSqrs n = sum (map (\x -> x*x) [1..n])

minimum = head . sort

“Infinite” Data Structures:

Data structures are evaluated lazily, so we can
specify “infinite” data structures in which only the

parts that are actually needed are evaluated:

powersOfTwo = iterate (2*) 1

twoPow n = powersOfTwo !! n

fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

fib n = fibs !! n

Circular Programs:

An example due to Richard Bird (“Using circular
programs to eliminate multiple traversals of data”):

Consider a tree datatype:
 data Tree = Leaf | Fork Int Tree Tree

Define a function

 repMin :: Tree -> Tree

that will produce an output tree with the same shape as
the input but replacing each integer with the minimum
value in the original tree.

Example:

Same shape, values replaced with minimum

4

2 3

9

6 1

5

7

1

1 1

1

1 1

1

1

repMin

Example:

Obvious implementation:

repMin t = mapTree (\n -> m) t

 where m = minTree t

4

2 3

9

6 1

5

7

1

1 1

1

1 1

1

1

repMin

Example:

Can we do this with only one traversal?

4

2 3

9

6 1

5

7

1

1 1

1

1 1

1

1

repMin

A Slightly Easier Problem:

In a single traversal:

•! Calculate the minimum value in the tree

•! Replace each entry with some given n

4

2 3

9

6 1

5

7

n

n n

n

n n

n

n

repMin’ n (1,)

A Single Traversal:

We can code this algorithm fairly easily:

repMin’ :: Int -> Tree -> (Int, Tree)

repMin’ n Leaf = (maxInt, Leaf)

repMin’ n (Fork m l r)

 = (min nl nr, Fork n l’ r’)
 where

 (nl, l’) = repMin’ n l

 (nr, r’) = repMin’ n r

“Tying the knot”

•! Now a call repMin’ m t will produce a pair (n, t’)
where

–! n is the minimum value of all the integers in t

–! t’ is a tree with the same shape as t but with each
integer replaced by m.

•! We can implement repMin by creating a cyclic
structure that passes the minimum value that is
returned by repMin’ as its first argument:

 repMin t = t’ where (n, t’) = repMin’ n t

Aligning Separators:
a more realistic

example

Mark is Fussy about Layout:

Have you noticed how I get fussy about code like:

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x:xs) = f x : map f xs

filter :: (a -> Bool) -> [a] -> [a]

filter p [] = []

filter p (x:xs)

 | p x = x : filter p xs

 | otherwise = filter p xs

Mark

Mark is Fussy about Layout:

… and try to line up the separators like this:

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x:xs) = f x : map f xs

filter :: (a -> Bool) -> [a] -> [a]

filter p [] = []

filter p (x:xs)

 | p x = x : filter p xs

 | otherwise = filter p xs

Mark

Can we do this Automatically?

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x:xs) = f x : map f xs

filter :: (a -> Bool) -> [a] -> [a]

filter p [] = []

filter p (x:xs)

 | p x = x : filter p xs

 | otherwise = filter p xs

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x:xs) = f x : map f xs

filter :: (a -> Bool) -> [a] -> [a]

filter p [] = []

filter p (x:xs)

 | p x = x : filter p xs

 | otherwise = filter p xs

Thinking about an Algorithm:

Let’s look at this line by line:

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x:xs) = f x : map f xs

filter :: (a -> Bool) -> [a] -> [a]

filter p [] = []

filter p (x:xs)

 | p x = x : filter p xs

 | otherwise = filter p xs

6

10

14

9

13

10

16

Total # chars up to and including first separator Maximum

Thinking about an Algorithm:

Let’s look at this line by line:

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x:xs) = f x : map f xs

filter :: (a -> Bool) -> [a] -> [a]

filter p [] = []

filter p (x:xs)

 | p x = x : filter p xs

 | otherwise = filter p xs

10

6

2

7

3

0

6

0

0

extra chars to insert before first separator

6

10

14

9

13

10

16

Some Preliminaries:

separators :: [String]

separators = ["=", "::"]

pad :: Int -> String -> String

pad n s = take n (s ++ repeat ' ')

Patching Lines:

patchLine :: Int -> String -> (Int, String)

patchLine n cs = head (matches ++ [(0, cs)])

 where

 matches = [let l = length s

 in (l + length as,

 pad (n-l) as ++ bs)

 | (as, bs) <- zip (inits cs)

 (tails cs),

 s <- separators,

 s `isPrefixOf` bs]

Target length to end
of first separator

Input
string

Output
string

Actual length to end
of first separator

Default case Find first match

Tying the Knot (again):

main :: IO ()

main = getEnv "TM_SELECTED_TEXT"

 >>= (putStr . align)

align :: String -> String

align s = unlines (map snd ps)

 where w = foldr max 0 (map fst ps)

 ps = map (patchLine w) (lines s)

An Editor Plugin:

Combining
Techniques of Lazy

Programming

“Escape! That's the goal.

Rush Hour is a premier
sliding block puzzle designed

to challenge your sequential-
thinking skills (and perhaps
your traffic-officer

aspirations as well).”

A Rush Hour Solver:

Uses lazy evaluation in three important ways:

–! Written in compositional style

–! Natural use of an infinite data structure (a search
tree that is subsequently pruned to a finite tree

that eliminates duplicate puzzle positions)

–! Cyclic programming techniques used to implement
breadth-first pruning of the search tree.

Representing the Board:

type Position = (Coord, Coord)

type Coord = Int

maxw, maxh :: Coord

maxw = 6

maxh = 6

Representing the Pieces:

type Vehicle = (Color, Type)

data Color = Red | … | Emerald

 deriving (Eq, Show)

data Type = Car | Truck

 deriving (Eq, Show)

len :: Type -> Int

len Car = 2

len Truck = 3

Representing Puzzles:

type Puzzle = [Piece]

type Piece = (Vehicle, Position, Orientation)

data Orientation = W | H

vehicle :: Piece -> Vehicle

vehicle (v, p, o) = v

solved :: Piece -> Bool

solved p = p == ((Red, Car), (4,3), W)

puzzle1 :: Puzzle

puzzle1 =

 [((LtGreen, Car), (0,5), W),

 ((Yellow, Truck), (5,3), H),

 ((Violet, Truck), (0,2), H),

 ((Blue, Truck), (3,2), H),

 ((Red, Car), (1,3), W),

 ((Orange, Car), (0,0), H),

 ((LtBlue, Car), (4,1), W),

 ((Emerald, Truck), (2,0), W)]

From Moves to Trees:
…

…

…

…

…

…

Checking for Obstructions:

puzzleObstructs :: Puzzle -> Position -> Bool

puzzleObstructs puzzle pos

 = or [pieceObstructs p pos | p<-puzzle]

pieceObstructs :: Piece -> Position -> Bool

pieceObstructs ((c,t), (x,y), W) (u,v)

 = (y==v) && (x<=u) && (u<x+len t)

pieceObstructs ((c,t), (x,y), H) (u,v)

 = (x==u) && (y<=v) && (v<y+len t)

Calculating Moves:

moves :: Puzzle -> Piece -> [Piece]

moves puzzle piece = step back piece ++ step forw piece

 where

 back :: Piece -> Maybe Piece

 back (v, (x,y), W)

 | x>0 && free p = Just (v, p, W)

 where p = (x-1, y)

 ...

 free = not . puzzleObstructs puzzle

 step :: (a -> Maybe a) -> a -> [a]

 step dir p = case dir p of

 Nothing -> []

 Just p’ -> p' : step dir p'

Forests and Trees:

type Forest a = [Tree a]

data Tree a = Node a [Tree a]

mapTree :: (a -> b) -> Tree a -> Tree b

mapTree f (Node x cs)

 = Node (f x) (map (mapTree f) cs)

pathsTree :: Tree a -> Tree [a]

pathsTree = descend []

 where descend xs (Node x cs)

 = Node xs' (map (descend xs') cs)

 where xs' = x:xs

Making Trees:

forest :: Puzzle -> Forest (Piece, Puzzle)

forest ps = [Node (m, qs) (forest qs)

 | (as, p, bs) <- splits ps,

 m <- moves (as++bs) p,

 let qs = as ++ [m] ++ bs]

splits :: [a] -> [([a], a, [a])]

splits xs = … exercise to the reader …

(e.g., splits "dog"

 = [("",'d',"og"),("d",'o',"g"),("do",'g',"")])

Pruning the Tree:

•! We want to avoid puzzle solutions in which the same
piece is moved in two successive turns

•! The generated tree may contain many instances of this
pattern

•! We can prune away repetition using:
trimRel :: (a -> a -> Bool) -> Tree a -> Tree a

trimRel rel (Node x cs)

 = Node x (filter (\(Node y _) -> rel x y) cs)

Eliminating Duplicate Puzzles:

•! We don’t want to explore any single puzzle configuration
more than once

•! We want to find shortest possible solutions (requires
breadth-first search of the forest)

xs1

xs2

xs3

xs4

xs1

xs2

xs3

[]

xsi = distinct positions
that have been found by
the end of the ith level

trimDups :: Eq b => (a -> b) -> Forest a -> Forest a

trimDups val f = f'

 where

 (f', xss)= prune f ([]:xss)

 prune [] xss = ([], xss)

 prune (Node v cs : ts) xss

 = let x = val v in

 if x `elem` head xss

 then prune ts xss

 else let (cs', xss1) = prune cs (tail xss)

 (ts', xss2)

 = prune ts ((x:head xss):xss1)

 in (Node v cs' : ts', xss2)

knot tying

infinite list

Breadth-First Search:

bfs :: Tree t -> [t]

bfs = concat . bft

bft (Node x cs) = [x] : bff cs

bff = foldr (combine (++)) [] . map bft

combine :: (a -> a -> a) -> [a] -> [a] -> [a]

combine f (x:xs) (y:ys) = f x y : combine f xs ys

combine f [] ys = ys

combine f xs [] = xs

The Main Solver:

solve :: Puzzle -> IO ()

solve = putStrLn

 . unlines

 . map show

 . reverse

 . head

 . filter (solved . head)

 . concat

 . bff

 . map (pathsTree . mapTree fst)

 . trimDups (\(p,ps) -> ps)

 . map (trimRel (\(v,ps) (w,qs) -> vehicle v /= vehicle w))

 . forest

Written in a fully
compositional style

Summary:

•! Laziness provides new ways (with respect to other paradigms) for
us to think about and express algorithms

•! Enhanced modularity from compositional style, infinite data
structures, etc…

•! Novel programming techniques like knot tying/circular programs
…

•! Further Reading:

–! Why Functional Programming Matters, John Hughes

–! The Semantic Elegance of Applicative Languages, D. A. Turner

–! Using Circular Programs to Eliminate Multiple Traversals of
Data Structures, Richard Bird

