
1 

CS 457/557: Functional 
Languages  

Leveraging Laziness 

Mark P Jones 

Portland State University 



Lazy Evaluation: 

With a lazy evaluation strategy: 

–! Don’t evaluate until you have to 

–! When you do evaluate, save the result so that you can 
use it again next time … 

Why use lazy evaluation? 

–! Avoids redundant computation 

–! Eliminates special cases (e.g., && and ||) 

–! Facilitates reasoning 

Lazy evaluation encourages: 

–! Programming in a compositional style 

–! Working with “infinite data structures” 

–! Computing with “circular programs” 



Compositional Style: 

Separate aspects of program behavior 
separated into independent components 

fact n   = product [1..n] 

sumSqrs n  = sum (map (\x -> x*x) [1..n]) 

minimum  = head . sort 



“Infinite” Data Structures: 

Data structures are evaluated lazily, so we can 
specify “infinite” data structures in which only the 

parts that are actually needed are evaluated: 

powersOfTwo = iterate (2*) 1 

twoPow n       = powersOfTwo !! n 

fibs     = 0 : 1 : zipWith (+) fibs (tail fibs) 

fib n    = fibs !! n 



Circular Programs: 

An example due to Richard Bird (“Using circular 
programs to eliminate multiple traversals of data”): 

Consider a tree datatype: 
 data Tree = Leaf | Fork Int Tree Tree 

Define a function 

  repMin :: Tree -> Tree 

that will produce an output tree with the same shape as 
the input but replacing each integer with the minimum 
value in the original tree. 



Example: 

Same shape, values replaced with minimum 
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Example: 

Obvious implementation: 

repMin t = mapTree (\n -> m) t 

               where m = minTree t 
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Example: 

Can we do this with only one traversal? 
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A Slightly Easier Problem: 

In a single traversal: 

•! Calculate the minimum value in the tree 

•! Replace each entry with some given n 
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A Single Traversal: 

We can code this algorithm fairly easily: 

repMin’   :: Int -> Tree -> (Int, Tree) 

repMin’ n Leaf  = (maxInt, Leaf) 

repMin’ n (Fork m l r) 

      = (min nl nr, Fork n l’ r’) 
       where 

         (nl, l’)  = repMin’ n l 

         (nr, r’) = repMin’ n r 



“Tying the knot” 

•! Now a call repMin’ m t  will produce a pair (n, t’) 
where 

–! n is the minimum value of all the integers in t 

–! t’ is a tree with the same shape as t but with each 
integer replaced by m. 

•! We can implement repMin by creating a cyclic 
structure that passes the minimum value that is 
returned by repMin’ as its first argument: 

       repMin t = t’ where (n, t’) = repMin’ n t 



Aligning Separators: 
a more realistic 

example 



Mark is Fussy about Layout: 

Have you noticed how I get fussy about code like: 

map :: (a -> b) -> [a] -> [b] 

map f [] = [] 

map f (x:xs) = f x : map f xs 

filter :: (a -> Bool) -> [a] -> [a] 

filter p [] = [] 

filter p (x:xs) 

   | p x = x : filter p xs 

   | otherwise = filter p xs 

Mark 



Mark is Fussy about Layout: 

… and try to line up the separators like this: 

map           :: (a -> b) -> [a] -> [b] 

map f []       = [] 

map f (x:xs)   = f x : map f xs 

filter        :: (a -> Bool) -> [a] -> [a] 

filter p []    = [] 

filter p (x:xs) 

   | p x       = x : filter p xs 

   | otherwise = filter p xs 

Mark 



Can we do this Automatically? 

map :: (a -> b) -> [a] -> [b] 

map f [] = [] 

map f (x:xs) = f x : map f xs 

filter :: (a -> Bool) -> [a] -> [a] 

filter p [] = [] 

filter p (x:xs) 

   | p x = x : filter p xs 

   | otherwise = filter p xs 

map           :: (a -> b) -> [a] -> [b] 

map f []       = [] 

map f (x:xs)   = f x : map f xs 

filter        :: (a -> Bool) -> [a] -> [a] 

filter p []    = [] 

filter p (x:xs) 

   | p x       = x : filter p xs 

   | otherwise = filter p xs 



Thinking about an Algorithm: 

Let’s look at this line by line: 

map :: (a -> b) -> [a] -> [b] 

map f [] = [] 

map f (x:xs) = f x : map f xs 

filter :: (a -> Bool) -> [a] -> [a] 

filter p [] = [] 

filter p (x:xs) 

   | p x = x : filter p xs 

   | otherwise = filter p xs 
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Thinking about an Algorithm: 

Let’s look at this line by line: 

map :: (a -> b) -> [a] -> [b] 

map f [] = [] 

map f (x:xs) = f x : map f xs 

filter :: (a -> Bool) -> [a] -> [a] 

filter p [] = [] 

filter p (x:xs) 

   | p x = x : filter p xs 

   | otherwise = filter p xs 
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Some Preliminaries: 

separators    :: [String] 

separators     = [ "=", "::" ] 

pad           :: Int -> String -> String 

pad n s        = take n (s ++ repeat ' ') 



Patching Lines: 

patchLine     :: Int -> String -> (Int, String) 

patchLine n cs = head (matches ++ [(0, cs)]) 

 where 

   matches = [ let l = length s 

               in (l + length as, 

                    pad (n-l) as ++ bs) 

             | (as, bs) <- zip (inits cs)  

                               (tails cs), 

               s <- separators, 

               s `isPrefixOf` bs ] 

Target length to end 
of first separator 

Input 
string 

Output 
string 

Actual length to end 
of first separator 

Default case Find first match 



Tying the Knot (again): 

main    :: IO () 

main     = getEnv "TM_SELECTED_TEXT" 

           >>= (putStr . align) 

align   :: String -> String 

align s  = unlines (map snd ps) 

     where w  = foldr max 0 (map fst ps) 

           ps = map (patchLine w) (lines s) 



An Editor Plugin: 



Combining 
Techniques of Lazy 

Programming 



“Escape!  That's the goal. 

Rush Hour is a premier 
sliding block puzzle designed 

to challenge your sequential-
thinking skills (and perhaps 
your traffic-officer 

aspirations as well).” 





















A Rush Hour Solver: 

Uses lazy evaluation in three important ways: 

–! Written in compositional style 

–! Natural use of an infinite data structure (a search 
tree that is subsequently pruned to a finite tree 

that eliminates duplicate puzzle positions) 

–! Cyclic programming techniques used to implement 
breadth-first pruning of the search tree. 



Representing the Board: 

type Position  = (Coord, Coord) 

type Coord  = Int 

maxw, maxh  :: Coord 

maxw   = 6 

maxh   = 6 



Representing the Pieces: 

type Vehicle = (Color, Type) 

data Color   = Red | … | Emerald 

           deriving (Eq, Show) 

data Type    = Car | Truck 

          deriving (Eq, Show) 

len    :: Type -> Int 

len Car    = 2 

len Truck    = 3 



Representing Puzzles: 

type Puzzle   = [Piece] 

type Piece   = (Vehicle, Position, Orientation) 

data Orientation  = W | H 

vehicle        :: Piece -> Vehicle 

vehicle (v, p, o)  = v 

solved        :: Piece -> Bool 

solved p   = p == ((Red, Car), (4,3), W) 



puzzle1 :: Puzzle 

puzzle1 = 

 [  ((LtGreen, Car),   (0,5), W), 

 ((Yellow, Truck),  (5,3), H), 

 ((Violet, Truck),  (0,2), H), 

 ((Blue, Truck),    (3,2), H), 

 ((Red, Car),       (1,3), W), 

 ((Orange, Car),    (0,0), H), 

 ((LtBlue, Car),    (4,1), W), 

 ((Emerald, Truck), (2,0), W) ] 



From Moves to Trees: 
…
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Checking for Obstructions: 

puzzleObstructs :: Puzzle -> Position -> Bool 

puzzleObstructs puzzle pos 

      = or [ pieceObstructs p pos | p<-puzzle ] 

pieceObstructs  :: Piece -> Position -> Bool 

pieceObstructs ((c,t), (x,y), W) (u,v) 

      = (y==v) && (x<=u) && (u<x+len t) 

pieceObstructs ((c,t), (x,y), H) (u,v) 

      = (x==u) && (y<=v) && (v<y+len t) 



Calculating Moves: 

moves             :: Puzzle -> Piece -> [Piece] 

moves puzzle piece = step back piece ++ step forw piece 

 where 

  back              :: Piece -> Maybe Piece 

  back (v, (x,y), W) 

     | x>0 && free p = Just (v, p, W) 

               where p = (x-1, y) 

  ... 

  free    = not . puzzleObstructs puzzle 

  step   :: (a -> Maybe a) -> a -> [a] 

  step dir p          = case dir p of 

                        Nothing -> [] 

                        Just p’ -> p' : step dir p' 



Forests and Trees: 

type Forest a   = [Tree a] 

data Tree a     = Node a [Tree a] 

mapTree        :: (a -> b) -> Tree a -> Tree b 

mapTree f (Node x cs) 

     = Node (f x) (map (mapTree f) cs) 

pathsTree :: Tree a -> Tree [a] 

pathsTree  = descend [] 

  where descend xs (Node x cs) 

     = Node xs' (map (descend xs') cs) 

       where xs' = x:xs 



Making Trees: 

forest    :: Puzzle -> Forest (Piece, Puzzle) 

forest ps  = [ Node (m, qs) (forest qs) 

    | (as, p, bs) <- splits ps, 

      m <- moves (as++bs) p, 

      let qs = as ++ [m] ++ bs ] 

splits    :: [a] -> [([a], a, [a])] 

splits xs  = … exercise to the reader … 

(e.g., splits "dog" 

           = [("",'d',"og"),("d",'o',"g"),("do",'g',"")]) 



Pruning the Tree: 

•! We want to avoid puzzle solutions in which the same 
piece is moved in two successive turns 

•! The generated tree may contain many instances of this 
pattern 

•! We can prune away repetition using: 
trimRel  :: (a -> a -> Bool) -> Tree a -> Tree a 

trimRel rel (Node x cs) 

   = Node x (filter (\(Node y _) -> rel x y) cs) 



Eliminating Duplicate Puzzles: 

•! We don’t want to explore any single puzzle configuration 
more than once 

•! We want to find shortest possible solutions (requires 
breadth-first search of the forest) 
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xsi = distinct positions 
that have been found by 
the end of the ith level 



trimDups :: Eq b => (a -> b) -> Forest a -> Forest a 

trimDups val f = f' 

 where 

  (f', xss)= prune f ([]:xss) 

  prune [] xss = ([], xss) 

  prune (Node v cs : ts) xss 

    = let x = val v in 

      if x `elem` head xss 

       then prune ts xss 

       else let (cs', xss1) = prune cs (tail xss) 

                (ts', xss2) 

           = prune ts ((x:head xss):xss1) 

                in (Node v cs' : ts', xss2) 

knot tying 

infinite list 



Breadth-First Search: 

bfs :: Tree t -> [t] 

bfs  = concat . bft 

bft (Node x cs) = [x] : bff cs 

bff             = foldr (combine (++)) [] . map bft 

combine :: (a -> a -> a) -> [a] -> [a] -> [a] 

combine f (x:xs) (y:ys) = f x y : combine f xs ys 

combine f []     ys     = ys 

combine f xs     []     = xs 



The Main Solver: 

solve :: Puzzle -> IO () 

solve  = putStrLn 

   . unlines 

   . map show 

   . reverse 

   . head 

   . filter (solved . head) 

   . concat 

   . bff 

   . map (pathsTree . mapTree fst) 

   . trimDups (\(p,ps) -> ps) 

   . map (trimRel (\(v,ps) (w,qs) -> vehicle v /= vehicle w)) 

   . forest 

Written in a fully 
compositional style 



Summary: 

•! Laziness provides new ways (with respect to other paradigms) for 
us to think about and express algorithms 

•! Enhanced modularity from compositional style, infinite data 
structures, etc… 

•! Novel programming techniques like knot tying/circular programs 
… 

•! Further Reading: 

–! Why Functional Programming Matters, John Hughes 

–! The Semantic Elegance of Applicative Languages, D. A. Turner 

–! Using Circular Programs to Eliminate Multiple Traversals of 
Data Structures, Richard Bird 


