
1

CS 457/557: Functional
Languages

I/O Actions in Haskell

Mark P Jones
Portland State University

2

Question:

If functional programs don’t
have any side-effects, then

how can we ever do anything
useful?

3

I/O: A quick overview

Computing by calculating:

  1 + 3

   take 32 (iterate (2*) 1)

  color red (translate (1,2) (circle 3))

   (leftTree `beside` rightTree)

  getChar >>= putChar

4

Demo:

… of Mac OS X Automator …

!!!

???

IO Actions:

  An IO action is a value of type IO T

  T is the type of values that it produces

5

:: IO a action

IO Actions:

If action :: IO a and function :: a -> IO b
then action >>= function :: IO b

6

:: IO a

:: a -> IO b

action

function

The New Haskell Logo:

7

Building Blocks:

(>>) :: IO a -> IO b -> IO b

p >> q is an I/O action in which the
output of p is ignored by q

 p >> q == p >>= \x -> q
 (where x does not appear in q)

8

Building Blocks:

return :: a -> IO a

An I/O action that returns its input with
no actual I/O behavior

9

Building Blocks:

inIO :: (a -> b) -> a -> IO b

An action inIO f applies the function f to
each input of type a and produces
outputs of type b as its results

10

Building Blocks:

mapM :: (a -> IO b)

 -> [a] -> IO [b]

An action mapM f takes a list of inputs of
type [a] as its input, runs the action f on
each element in turn, and produces a list
of outputs of type [b]

11

Building Blocks:

mapM_ :: (a -> IO b)

 -> [a] -> IO()

An action mapM_ f takes a list of inputs
of type [a] as its input, runs the action f
on each element in turn, and produces a
result of type () as output

12

Terminal Output:

putStr :: String -> IO ()

putStrLn :: String -> IO ()

An action putStr s takes a String input
and outputs it on the terminal producing
a result of type ()

putStrLn s does the same thing but adds
a trailing new line

13

Terminal Output:

print :: Show a => a -> IO ()

A print action takes a value whose type
is in Show and outputs a corresponding
String on the terminal

14

15

Special Treatment of IO:

   The main function in every Haskell program is expected to

have type IO ()

   If you write an expression of type IO t at the Hugs
prompt, it will be evaluated as a program and the result
discarded

   If you write an expression of some other type at the Hugs
prompt, it will be turned in to an IO program using:

 print :: (Show a) => a -> IO ()
 print = putStrLn . show

   If you write an expression e of type IO t at the GHCi
prompt, it will treat it as e >>= print

Web Actions:

The WebActions module provides the
following I/O actions:
getText :: URL -> IO String

getByteString :: URL -> IO ByteString

writeByteString :: String -> ByteString -> IO ()

downloadTo :: FilePath -> URL -> IO ()

getTags :: URL -> IO [Tag]

getHrefs :: URL -> IO [URL]

getHTML :: URL -> IO [TagTree]

getXML :: URL -> IO [Content]

16

Viewing a Webpage:
return url

 >>= getText

 >>= putStr

17

Counting Characters:
return url

 >>= getText

 >>= inIO length

 >>= print

18

Counting Lines:
return url

 >>= getText

 >>= inIO (length . lines)

 >>= print

19

Viewing a Webpage as Tags:
return url

 >>= getTags

 >>= inIO (unlines . map show)

 >>= putStr

20

Extracting Hyper-references:
getHrefs :: URL -> IO [URL]

getHrefs url

 = getTags url >>= \ts ->

 return [link |

 (TagOpen "a" attrs) <- ts,

 ("href", link) <- attrs]

21

Downloading From a Webpage:
return url

 >>= getHrefs

 >>= inIO (filter (isSuffixOf "hs"))

 >>= mapM_ (downloadTo "source")

22

Implementing downloadTo:
downloadTo :: FilePath -> URL -> IO ()

downloadTo dir url

 = getByteString url

 >>= writeByteString (dir </> urlName url)

urlName :: String -> String

urlName = reverse

 . takeWhile ('/'/=)

 . reverse

23

Visualizing a Webpage:
return url

 >>= getTags

 >>= inIO tagTree

 >>= inIO (listToDot "root")

 >>= writeFile "tree.dot"

24

25

IOActions Primitives:
putChar :: Char -> IO ()
putStr :: String -> IO ()

putStrLn :: String -> IO ()

print :: Show a => a -> IO ()

getChar :: IO Char

getLine :: IO String

getContents :: IO String

readFile :: String -> IO String

writeFile :: String -> IO ()

26

… continued:
getDirectoryContents :: FilePath -> IO [FilePath]

getDirectoryPaths :: FilePath -> IO [FilePath]

getCurrentDirectory :: IO FilePath
getHomeDirectory :: IO FilePath

doesFileExist :: FilePath -> IO Bool

doesDirectoryExist :: FilePath -> IO Bool
createDirectory :: FilePath -> IO ()

getFiles :: FilePath -> IO [FilePath]

getDirectories :: FilePath -> IO [FilePath]
getArgs :: IO [String]

getProgName :: IO String

getEnv :: String -> IO String
runCommand :: String -> FilePath -> IO ExitCode

Exercises:

  Load up IOActions.hs, and write IO
Actions to answer the following:
  How many Haskell source files are there in

the current directory?
  How many lines of Haskell source code are

in the current directory?
  What is the largest Haskell source file in

the current directory
  Copy the largest Haskell source file in the

current directory into Largest.hs
27

Visualizing a File System:
data FileSystem = File FilePath

 | Folder FilePath [FileSystem]

 | Foldep FilePath

 deriving Show

instance Tree FileSystem where …

Instance LabeledTree FileSystem where …

28

… continued:
getFileSystemDir :: Int -> FilePath -> FilePath -> IO FileSystem

getFileSystemDir n path name

 | n < 1 = return (Foldep name)

 | otherwise = getDirectoryContents path

 >>= inIO (filter (not . dotFile))

 >>= mapM (getFileSystemIn (n-1) path)

 >>= inIO (Folder name)

getFileSystemIn :: Int -> FilePath -> FilePath -> IO FileSystem

getFileSystemIn n parent child

 = doesDirectoryExist path

 >>= \b-> case b of

 True -> getFileSystemDir n path child

 False -> return (File child)

 where path = parent </> child

29

Visualizing a FileSystem:
return "haskore-vintage-0.1"

 >>= getFileSystem 4

 >>= inIO toDot

 >>= writeFile "tree.dot”

30

Alternative Notation:

  The pipelined style for writing IO
Actions isn’t always so convenient:
  Need to refer to an input at multiple

stages of a pipeline?
  Non-linear flow (error handling)?
  Recursion? Loops?
  Shorter lines?

31

32

“do-notation”:

   Syntactic sugar for writing IO actions:

 do p1
 p2
 …
 pn

 is equivalent to:
 p1 >> p2 >> … >> pn

 and can also be written:
 do p1; p2; …; pn or do { p1; p2; …; pn }

33

Extending “do-notation”:
We can bind the results produced by IO actions
variables using an extended form of do-notation.
For example:

 do x1 <- p1
 …

 xn <- pn

 q

is equivalent to:
 p1 >>= \x1 ->
 …
 pn >>= \xn ->
 q

last item must be
an expression

all “generators” should have
the same indentation

variables introduced in a
generator are in scope for
the rest of the expression

The “v <-” portion of a
generator is optional and

defaults to “_ <-” if

34

Defining mapM and mapM_:
mapM_ :: (a -> IO b) -> [a] -> IO ()

mapM_ f [] = return ()

mapM_ f (x:xs) = f x
 >> mapM_ f xs

mapM :: (a->IO b) -> [a]->IO [b]
mapM f [] = return []

mapM f (x:xs) = f x >>= \y ->

 mapM f xs >>= \ys->
 return (y:ys)

35

Defining mapM and mapM_:
mapM_ :: (a -> IO b) -> [a] -> IO ()

mapM_ f [] = return ()

mapM_ f (x:xs) = do f x
 mapM_ f xs

mapM :: (a->IO b) -> [a]->IO [b]
mapM f [] = return []

mapM f (x:xs) = do y <- f x
 ys <- mapM f xs
 return (y:ys)

36

More examples: getChar

  A simple primitive for reading a single
character:
 getChar :: IO Char

  A simple example:
 echo :: IO a
 echo = do c <- getChar

 putChar c
 echo

37

Reading a Complete Line:

getLine :: IO String
getLine = do c <- getChar

 if c=='\n'
 then return ""
 else do cs <- getLine
 return (c:cs)

38

Alternative:
getLine :: IO String
getLine = loop []

loop :: String -> IO String
loop cs = do c <- getChar

 case c of
 '\n' -> return (reverse cs)
 '\b' -> case cs of
 [] -> loop cs
 (c:cs) -> loop cs
 c -> loop (c:cs)

39

There is No Escape!

  There are plenty of ways to construct
expressions of type IO t

  Once a program is “tainted” with IO,
there is no way to “shake it off”

  For example, there is no primitive of
type IO t -> t that runs a program
and returns its result

40

The Real Primitives:

   Many of the I/O functions that we’ve

introduced can be defined in terms of other
I/O functions

   The fundamental primitives are:
return :: a -> IO a
(>>=) :: IO a -> (a -> IO b) -> IO b

putChar :: Char -> IO ()
getChar :: IO Char
…

41

Generalizing …

  We can define versions of return and
(>>=) for other types:

return :: a -> List a
return x = [x]

(>>=) :: List a -> (a -> List b) -> List b
xs >>= f = [y | x <- xs, y <- f x]

   I can feel a type class coming on …

42

Further Reading:

   “Tackling the Awkward Squad:
monadic input/output, concurrency,
exceptions, and foreign-language calls
in Haskell” Simon Peyton Jones, 2005

   “Imperative Functional Programming”
Simon Peyton Jones and Philip Wadler,
POPL 1993

