
CS 457/557: Functional
Languages

Folds

2

Today’s topics:

• Folds on lists have many uses

• Folds capture a common pattern of computation
on list values

• In fact, there are similar notions of fold functions
on many other algebraic datatypes …)

3

Folds!

• A list xs can be built by applying the (:) and [] operators to a
sequence of values:

xs = x1 : x2 : x3 : x4 : … : xk : []

• Suppose that we are able to replace every use of (:) with a
binary operator (), and the final [] with a value n:

xs = x1 x2 x3 x4 … xk n

• The resulting value is called fold () n xs

• Many useful functions on lists can be described in this way.

4

Graphically:

:

:

:

[]

e1

e2

e3
n

e1

e2

e3

f

f = foldr () n

5

Example: sum

:

:

:

[]

e1

e2

e3

+

+

+

0

e1

e2

e3

sum = foldr (+) 0

6

Example: product

:

:

:

[]

e1

e2

e3

*

*

*

1

e1

e2

e3

product = foldr (*) 1

7

Example: length

:

:

:

[]

e1

e2

e3

cons

cons

cons

0

e1

e2

e3

cons x ys = 1 + ys

length = foldr (\x ys -> 1 + ys) 0

8

Example: map

:

:

:

[]

e1

e2

e3

cons

cons

cons

[]

e1

e2

e3

cons x ys = f x:ys

map f = foldr (\x ys -> f x : ys) []

9

Example: filter

:

:

:

[]

e1

e2

e3

cons

cons

cons

[]

e1

e2

e3

cons x ys
= if p x

then x:ys
else ys

filter p = foldr (\x ys -> if p x then x:ys else ys) []

10

Formal Definition:

foldr :: (a->b->b) -> b -> [a] -> b

foldr cons nil [] = nil

foldr cons nil (x:xs) = cons x (foldr cons nil xs)

11

Applications:

sum = foldr (+) 0

product = foldr (*) 1

length = foldr (\x ys -> 1 + ys) 0

map f = foldr (\x ys -> f x : ys) []

filter p = foldr c []

where c x ys = if p x then x:ys else ys

xs ++ ys = foldr (:) ys xs

concat = foldr (++) []

and = foldr (&&) True

or = foldr (||) False

12

Patterns of Computation:

• foldr captures a common pattern of computations over lists

• As such, it’s a very useful function in practice to include in
the Prelude

• Even from a theoretical perspective, it’s very useful
because it makes a deep connection between functions
that might otherwise seem very different …

• From the perspective of lawful programming, one law
about foldr can be used to reason about many other
functions

13

A law about foldr:

• If () is an associative operator with unit n, then
foldr () n xs foldr () n ys

= foldr () n (xs ++ ys)

• (x1 … xk n) (y1 … yj n)
= (x1 … xk y1 … yj n)

• All of the following laws are special cases:
sum xs + sum ys = sum (xs ++ ys)
product xs * product ys = product (xs ++ ys)
concat xss ++ concat yss = concat (xss ++ yss)
and xs && and ys = and (xs ++ ys)
or xs || or ys = or (xs ++ ys)

14

foldl:

• There is a companion function to foldr called foldl:
foldl :: (b -> a -> b) -> b -> [a] -> b

foldl s n [] = n

foldl s n (x:xs) = foldl s (s n x) xs

• For example:

foldl s n [e1, e2, e3]
= s (s (s n e1) e2) e3

= ((n `s` e1) `s` e2) `s` e3

15

foldr vs foldl:

snoc

snoc

snoc

nil

e3

e2

e1

cons

cons

cons

nil

e1

e2

e3

foldr foldl

16

Uses for foldl:

• Many of the functions defined using foldr can be defined
using foldl:

sum = foldl (+) 0

product = foldl (*) 1

• There are also some functions that are more easily defined
using foldl:

reverse = foldl (\ys x -> x:ys) []

• When should you use foldr and when should you use foldl?
When should you use explicit recursion instead? … (to be
continued)

17

foldr1 and foldl1:

• Variants of foldr and foldl that work on non-empty lists:
foldr1 :: (a -> a -> a) -> [a] -> a

foldr1 f [x] = x

foldr1 f (x:xs) = f x (foldr1 f xs)

foldl1 :: (a -> a -> a) -> [a] -> a

foldl1 f (x:xs) = foldl f x xs

• Notice:
– No case for empty list

– No argument to replace empty list

– Less general type (only one type variable)

18

Uses of foldl1, foldr1:

From the prelude:

minimum = foldl1 min

maximum = foldl1 max

Not in the prelude:

commaSep = foldr1 (\s t -> s ++ ", " ++ t)

19

Example: Folds on Trees

foldTree :: t -> (t -> Int -> t -> t) -> Tree -> t
foldTree leaf fork Leaf = leaf
foldTree leaf fork (Fork l n r)

= fork (foldTree leaf fork l) n (foldTree leaf fork r)

sumTree :: Tree -> Int
sumTree = foldTree 0 (\l n r-> l + n + r)

catTree :: Tree -> [Int]
catTree = foldTree [] (\l n r -> l ++ [n] ++ r)

treeSort :: [Int] -> [Int]
treeSort = catTree . foldr insert Leaf

