

Today’s topics:

Folds on lists have many uses

Folds capture a common pattern of computation
on list values

In fact, there are similar notions of fold functions
on many other algebraic datatypes ...)

Folds!

A list xs can be built by applying the (:) and [] operators to a
sequence of values:

X5=X1:X2:X3:X4:...:Xk:[]

Suppose that we are able to replace every use of (:) with a
binary operator (), and the final [] with a value n:

XS=X;, DX, DX; DX, D ... Dx, Dn

The resulting value is called fold (®) n xs
Many useful functions on lists can be described in this way.

Graphically:

o

ea
€,
€3

f =foldr (®) n

Example: sum

.

€53

sum = foldr (+) O

Example: product

R, |

product = foldr (*) 1

Example: length

consxys=1+ys

-

€53

length = foldr (\x ys->1+vys) 0

Example: map

cons x ys = f x:ys

.

€53

map f = foldr (\x ys -> f x : ys) []

Example: filter

CoNs X Ys
=ifp x
then x:ys
else ys
>
€,

€53

filter p = foldr (\x ys -> if p x then x:ys else ys) []

Formal Definition:

foldr :: (a->b->b) ->b->[a] -> b
foldr cons nil [] = nil
foldr cons nil (x:xs) = cons x (foldr cons nil xs)

10

Applications:

sum = foldr (+) O

product = foldr (*) 1

length = foldr (\x ys->1+ys)0

map f = foldr (\x ys -> f x : ys) []

filter p =foldr c []
where c x ys = if p x then x:ys else ys

xs ++ys = foldr (:) ys xs
concat = foldr (++) []
and = foldr (&&) True

or =foldr (||) False

11

Patterns of Computation:

foldr captures a common pattern of computations over lists

As such, it’s a very useful function in practice to include in
the Prelude

Even from a theoretical perspective, it’s very useful
because it makes a deep connection between functions
that might otherwise seem very different ...

From the perspective of lawful programming, one law
about foldr can be used to reason about many other
functions

A law about foldr:

e |f (D) is an associative operator with unit n, then
foldr (D) n xs @ foldr (@) n ys
= foldr (@) n (xs ++ ys)

* X,D..OxDPn)D(y;D..Dy Dn)
=(,D..Ox Dy, ..y @n)

* All of the following laws are special cases:
sum Xxs + sumys =sum (xs ++ ys)
product xs * product ys = product (xs ++ ys)
concat xss ++ concat yss = concat (xss ++ yss)
and xs && andys = and (xs ++ ys)
or Xs || or ys = or (Xs ++ ys)

foldl:

* There is a companion function to foldr called foldl:
foldl t(b->a->b)->b->[a]>b
foldl s n [] =n
foldl s n (x:xs) = foldl s (s n x) xs

* For example:
foldl s n [e,, e,, e;]
=s(s(sneye,)e;
=((n's e;) s &) s e;

14

foldr vs foldl:

15

Uses for foldl:

 Many of the functions defined using foldr can be defined
using foldl:
sum = foldl (+) O
product =foldl (*)1

* There are also some functions that are more easily defined
using foldl:

reverse = foldl (\ys x -> x:ys) []

 When should you use foldr and when should you use fold|?
When should you use explicit recursion instead? ... (to be
continued)

16

foldrl and foldl1:

* Variants of foldr and foldl that work on non-empty lists:

foldrl m(a->a->a)->[a] >a
foldrl f [x] =X
foldrl f (x:xs) = f x (foldrl f xs)
foldll s(a->a->a)->[a] >a
foldl1 f (x:xs) = foldl f x xs

* Notice:

— No case for empty list
— No argument to replace empty list
— Less general type (only one type variable)

17

Uses of foldl1, foldr1l:

From the prelude:
minimum = foldl1 min

maximum = foldl1l max

Not in the prelude:

commaSep = foldrl (\st->s++", " ++ t)

18

Example: Folds on Trees

foldTree ::t->(t->Int->t->t)->Tree->t
foldTree leaf fork Leaf = leaf
foldTree leaf fork (Fork I nr)
= fork (foldTree leaf fork I) n (foldTree leaf fork r)

sumTree :: Tree -> Int
sumTree =foldTreeO(\lnr->l+n+r)

catTree :: Tree ->[Int]
catTree =foldTree [] (\Inr->1++ [n] ++r)

treeSort ::[Int] -> [Int]
treeSort = catTree . foldr insert Leaf

19

