CS 457/557: Functional
Languages

Equational Reasoning: Algebra of Programming

Mark P Jones
Portland State University

What Makes a Good Program?

¢ Performance?

@ Code size?
@ Maintainability?
@ Above all else, correctness!

€@ But what does that mean? How can it be
established?

Testing:

@ Tests confirm expectations
about the way things work

@ If you drop a weight ...

¢ .. ontoanegg...

@ ... Scrambled Egg!

€dg

Testing:

€ Suppose it's our job to
protect eggs from falling
weights ...

® We might design an EP

(Egg Protector™) to
accomplish this ...

€ Then we test again ...

@ Hooray! The egg is safe! © @

Generalizing from Tests:

@ "The EP will protect an egg from
a falling weight”

€ Scrambled egg, and a crushed EP ®
How embarrassing ...

@ It can be dangerous to
generalize from the
results of testing!

Refining the claim:

® Think back to our test:

@ "The EP will protect an egg from a
falling weight of at most 1kg”

@ This isn't such a general statement

€ ... but it describes the EP’s
properties more accurately

More Tests:

@ "The EP will protect an egg
from a falling weight of at
most 1kg”

@ Oops, another
embarrassing oversight!

Refining the EP Design:

@ "The EP will protect an egg
from a falling weight of at
most 1kg”

! EP 1.0

Refining the EP Design:

@ "The EP 2.0 will protect an
egg from a falling weight of
at most 1kg”

€® We had to change the
design of the EP ...

€ But our egg is safe again!

Oris it?

® We'd like the EP to protect
any eqgg ...

-

Oris it?

® We'd like the EP to protect
any eqgg ...

¢ ... from any weight ...

General Observations:

@ Testing helps us to find (and then avoid):
=bugs in the things that we build
mbugs in the claims that we make about them

@ Testing and Development working together ...

¢ But ...

Testing has Limits:

@ "testing can be used to show
the presence of bugs, but
never to show their
absence" [Edsger Dijkstra,

o Il

@ To be absolutely certain that the
EP 2.0 will protect any egg from
any weight under 1kg, we will

need to prove it.

Equational Reasoning:

@ Functional Languages are Good for
Equational Reasoning (Gofer!)

@ Much of what follows is inspired by the
work of Richard Bird

@ Goal: to prove laws of the form e,=¢,
relating program fragments e, and e,

@ Goal: to calculate/synthesize efficient
definitions of functions from clear, high-
level specifications

14

Laws of Numbers:

If n is a natural number, then either:
n=20;or

n =1+ m for some (smaller) natural m

Functions on natural numbers:
0 + N = n

(1+m)+n = 1+ (M + n)

Does this look at all familiar?

15

+ |S associative:

Vn.Vp.Vag.(n+p)+g=n+(p+q)

If n = 0, then
(n+p)+g
=(0+p) +q (because n = 0)
=p+(d (definition of +)

=0+ (p+Qq) (definition of +)

16

+ |S associative:

Vn.Vp.Vag.(n+p)+g=n+(p+q)

If n = (1+m), then
(n+p)+g
=((1+m)+p)+q
=(1+(m+p) +g
=1+ ((m+p)+q)
=1+(m+(p+q))
=(1+m)+(p+q)
=n+(p+q)

(because n=1+m)
(definition of +)
(definition of +)
(induction)
(definition of +)
(definition of +)

17

+ |S associative:

We've shown:

" The property holds forn = 0

= If the property holds for n = m, then it holds for n
=(1+m)

" Soitholds forn =1

" And forn = 2

= And forn = 3

In fact, we've shown that it holds for all n:
vn.vVp.Vg. (n+p)+g=n+(p+q)

18

Laws of Numbers:

If n is a natural number, then either:
n = Zero; or
n = Succ m for some (smaller) natural m

data Nat = Zero | Succ Nat

Functions on natural numbers:
add Zero n =n
add (Succ m) n = Succ (add m n)

19

add is associative:
VYn. Vp. Vg. add (add n p) g = add n (add p q)

If n = Zero, then
add (add n p) g
= add (add Zero p) (because n = Zero)

= add p g (definition of add)
= add Zero (add p q) (definition of add)

20

add is associative:

vn. Vp. Vq. add (add n p) g = add n (add p q)

If n = Succ m, then

add (add n p) @

= add (add (Succ m) p) 9 (because n=1+m)
add (Succ (add m p)) g (definition of +)
= Succ (add (add m p)) (definition of +)
= Succ (add m (add p g)) (induction)
add (Succ m) (add p Q) (definition of +)
= add n (add p q) (definition of +)

21

add is associative:

We've shown:
= The property holds for n = Zero

= If the property holds for n = m, then it holds for n
= Succ m

= So it holds for n = Succ Zero
= And for n = Succ (Succ Zero)
= And for n = Succ (Succ (Succ Zero))

In fact, we've shown that it holds for all n:
vn. Vp. Vq. add (add n p) g = add n (add p q)

22

Laws in Haskell:

We can apply these same ideas to many other
Haskell datatypes, not just numbers

Algebra for programs:

@ Break into cases (no junk, no confusion)
@ Induction (recursion)

€ Equational reasoning

23

Where do Laws come From?

Laws typically arise in one of three ways:

@ From function definitions (with care)
(X:XS) ++ ys = X : (XS ++ ys)

@ From previously established laws
map f. map g =map (f. g)

@ From specifications of new functions
sumSquares n = sum (map square [1..n])

24

Referential Transparency:

@ The ability to replace equals with
equals

s If e,=€,, then ...e;... = ...e,...
€ The inability to observe sharing

slet x=e In (X,x) = (e e)
m let x =print1in (x,x) = (print 1, print 1)

25

Tools:

@ Extensionality:
lf=g = Vx.fx=gx

@ Simple substitution/instantiation:

= From (f . g) x = f (g x), we can infer that
((1+).(2"))n=1+ 2*n

26

... continued:

@ Case analysis:

s If Xs :: [a], then xs =[], or xs = (y:ys) for
someyandys, or Xxs = L

= If b :: Bool, then b=False, b=True, or b=_1

€ Induction:

m If property P(xs) holds for xs = [] and for
Xs = 1, and for (y:ys) whenever it holds
for ys, then P(xs) holds for all lists xs.

27

Introducing Bottom, L:

@® We treat every type in Haskell as having a special
element called bottom, written L

@ 1 represents the value produced by expressions
that fail to terminate properly
= Non-termination
= Error (e.g., missing pattern matching case)
= Explicit call of error “... message ...”

@ Called “bottom” because it has the least amount
of information of any value

28

Strictnhess:

€ We say that a function is strict if it is
guaranteed to evaluate its argument.

€ Another way to say this: f is strict if, and
only if f

@ Examples:
= (1+) and not are both strict

s (&&) and (||) are strict in their left arguments,
but not in their right

= Map is strict in its list argument (but not the
function)

29

Example:

@ Suppose we specify:
f i [Int] -> [Int]
f =map (1+)

€ Now we can calculate:

f[]
= { by definition of f }

map (1+) []
= { by definition of map}

[]

30

... continued:

@® We can also calculate:
f (Xx:xs)
= { by definition of f }
map (1+) (x:xs)
= { by definition of map }
(1+x) : map (1+) xs
= { by definition of f }
(1 +x):fxs
€ Thus we have derived:
f . [Int] -> [Int]
f[] =[]

f(x:ixs) = (1+x):fxs

31

Associativity of (++):

Claim: xs++(ys++zs) = (xs++ys)++zs, for all
XS, ys, and zs

Proof by induction on Xxs:
Base case: xs = []
[]++ (ys ++ zS)
= { by definition of ++ }
yS ++ zS
= { by definition of ++ }
([] ++ ys) ++ zs

32

. continued:

Base case: xs = L
lhs: L ++ (ys ++ z5)
= { ++ is strict in its first argument }
1

rhs: (L ++ys) ++ zs
= { ++ is strict in its first argument }
1 ++ zs
= { ++ is strict in its first argument }
1

33

... continued:

Inductive case: (X:Xs)
(X:xs) ++ (ys ++ z5)
= { by definition of ++ }
X : (Xs ++ (ys ++ 25))
= { by induction }
X : ((Xxs ++ ys) ++ z5)
= { by definition of ++ }
(X: (XS ++ ys)) ++ zs
= { by definition of ++ }
((X:xs) ++ ys) ++ zs

34

Fold Right:

A function from the prelude:
foldr:: (a->b->b)->b->[a]->b
foldr (®) e [Xg, X1, %] = X @ (X; ® (X, @ €))

Examples:
and = foldr (&&) True
concat = foldr (++) []
Definition:
foldrfe[] =e

foldr f e (x:xs) = f x (foldr f e xs)

35

Fold Left:

A function from the prelude:
foldl :: (@a->b->a)->a->[b]->a
foldl (®) e [Xo X, %] = (€ ®Xp) ®X;) DX,

Examples:
sum = foldl (+) 0
product = foldl (*) 1
Definition:
foldl fe[] =e

foldl f e (x:xs) = foldl f (f e x) xs

36

Scan Left:

A function from the prelude:
scanl :: (@a->b->a)->a->[b]->[a]
scanl (®) e [Xq,X{,X%5]
= [e, e®X,, (e®Xy)®X, ((e®Xy)DX;)DX,]

Specification:
scanlfe = map (foldl f e) . inits
inits [] = [[1]

inits (x:xs) =[] : map (x:) (inits xs)

37

Calculating scanl:

It is easy to derive scanl f e [] = [€]

For non empty lists:
scanl f e (Xx:xs)

= ma
ma
folcg

» (fold
» (fold
| fel]

fold

| fel[]

f e) (inits (x:xs))

fe)([]: map (x:) (inits xs))

: map (foldl f e) (map (x:) (inits xs))
: map (foldl f e . (x:)) (inits xs)

e : map (foldl f (f e x)) (inits xs)

= e : scanl f (f e X) xs

38

Comparison:

@ Specification:

scanl f e = map (foldl f e) . inits
@ Definition:
scanl f e [] = [e]

scanl f e (x:xs) = e : scanl f (f e x) xs

@ The specification requires O(n?2) applications of f
on a list of length n while the definition uses only
n applications for a list of the same length.

@ But, in terms of the results that we obtain, we

know that the two versions are equal! .

Scan Right:

A dual of scanl:
scanr (@->b->b)->b->[a] -> [b]
scanrfe = map (foldr f e) . tails

scanr (®) e [Xq, Xy, X5]
= [X@(X;D(X,® €)), X, &(X,® €), X,® €, €]

More efficient version:
scanr f e [] = [e]
scanr f e (x:xs) = fx(headys) :ys
where ys = scanr f e xs

40

Maximum Segment Sum:

@ Given a sequence of numbers, find the
subsegment whose sum is largest:

s Example: maximal subsegment sum for the list
-1, 2,-3,5,-2,1, 3,-2,-2,-3, 6] is 7 (for the
segment [5, -2, 1, 3])

@ Simple solution:
mss :: [Int] -> Int
MSS = maximum . map sum . segs
where segs = concat . map inits . tails

@ Not a great performer ... O(n3)

41

Calculate!

mSS
= {definition of mss}

maximum . map sum . segs

42

Calculate!

mss
= {definition of segs}

maximum . map sum . concat . map inits . tails

43

Calculate!

mss
= {using map f . concat = concat . map (map f) }

maximum . concat . map (map sum) . map inits . tails

(map f . concat) [XS;, XS,, XS5]
= map f (xs; ++ XS, ++ XS;)
= map f xs; ++ map f xs, ++ map f xs;

(concat . map (map f)) [XS;, XS5, XSs]
= concat [map f xs;, map f xs,, map f xs;]
= map f xs; ++ map f xs, ++ map f xs;

44

Calculate!

MSS

= {usingmapf.mapg=map (f.qg) }

maximum . concat . map (map sum . inits) . tails

(mapf map g) [Xll XZI X3]
=map f[gX;, X, gX;3]
=[f(gxy), F(gx;), f(gx3)]

map (f. g) [x;, X5, X31]
=[(f.g)xy, (f.g) Xy, (F. g) X3]
=[f(gxy), F(gx;), f(gx3)]

45

Calculate!

mss
= { the “bookkeeping law” }

maximum . map maximum . map (map sum . inits) . tails

maximum . concat
= maximum . map maximum

General form:

foldr f a . concat = foldr f a . map (foldr f a)
if f is associative with unit a

46

Calculate!

mss
= { Definition of scanl }

maximum . map maximum . map (scanl (+) 0) . tails

Definition:
scanl f e = map (foldl f e) . inits

47

Calculate!

MSS

= {usingmapf.mapg=map (f.qg) }

maximum . map (maximum . scanl (+) 0) . tails

map f. map g = map (f . g)
(again ...)

48

Calculate!

S
= { fold-scan fusion }

maximum . map (foldr f 0) . tails
where f xy = max 0 (X + y)

We can prove that:

maximum . scanl (+) 0 = foldr f O
(A special case of a general property
called “Fold-scan fusion™)

49

Calculate!

mSS
= { definition of scanr }

maximum . scanr f 0
wherefxy =max 0 (x +v)

Definition of scanr:
scanr f e = map (foldr f e) . tails

A simple, linear time algorithm,
courtesy of equational reasoning!

50

CaICUIate| Remember:

scanr (®) e [Xq, Xy, X,]

= [X@(X;B(X,® €)),
mss AR
= { definition of scanr })e(ﬁ@ e,

maximum . scanr f 0
where f xy = max 0 (x +y)

mss xS = loop 0 0 (reverse Xs)
where
loop m v [] =m
loop mv (x:xs) = lety = max 0 (x+Vv)
in loop (max my)y xs

This version of the definition is
not very intuitive ... but we know
by construction that it is correct!

51

A Quick Check:

Just to be sure, let’s load these definitions ** 'ugs
and quickly check to see if they ar-

Main> quickChe~' . \)ed S
OK, p>~ (\’(—\(\
e (O

10

Hmm, now that looks like another useful toal,
doesn't it ...

52

Summary:

N4

The ability to reason about code is essential if you
care about its behavior (for example, in safety or
security critical applications)

Compilers rely on equivalences between program
fragments to justify/validate some optimizations

Functional Languages are Good for Equational
Reasoning

Referential transparency/lack of side effects
makes reasoning more tractable

It helps to build up a collection of laws and
results that you can draw on in program

verification or synthesis!
53

