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What Makes a Good Program? 

! " Performance? 

! " Code size? 

! " Maintainability? 

! " Above all else, correctness! 

! " But what does that mean?  How can it be 
established? 
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egg 

Testing: 

! " Tests confirm expectations 

about the way things work 

! " If you drop a weight … 

! " … onto an egg … 

! " … Scrambled Egg! 

1 kg 
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egg 

1 kg 

Testing: 

! " Suppose it’s our job to 

protect eggs from falling 
weights … 

! " We might design an EP 

(Egg ProtectorTM) to 
accomplish this … 

! " Then we test again … 

! " Hooray!  The egg is safe!  ! 
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egg 

10 kg 

Generalizing from Tests: 

! " “The EP will protect an egg from 

a falling weight” 

! " It can be dangerous to 

generalize from the 
results of testing! 

! " Scrambled egg, and a crushed EP " 

 How embarrassing … 
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egg 

Refining the claim: 

! " Think back to our test: 

! " “The EP will protect an egg from a 

falling weight of at most 1kg” 

1 kg 
! " This isn’t such a general statement 

… 

! " … but it describes the EP’s 

properties more accurately 
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egg 

1 kg 

More Tests: 

! " Oops, another 
embarrassing oversight! 

! " “The EP will protect an egg 
from a falling weight of at 

most 1kg” 
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egg 

Refining the EP Design: 

! " “The EP will protect an egg 
from a falling weight of at 

most 1kg” 

EP 1.0 
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egg 

1 kg 

Refining the EP Design: 

! " We had to change the 
design of the EP … 

! " “The EP 2.0 will protect an 
egg from a falling weight of 

at most 1kg” 

! " But our egg is safe again! 
EP 2.0 
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Or is it? 

1 kg 

egg 

! " We’d like the EP to protect 
any egg … 
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Or is it? 

egg 

1 kg 

! " We’d like the EP to protect 
any egg … 

! " … from any weight … 
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egg 

General Observations: 

! "Testing helps us to find (and then avoid): 

#"bugs in the things that we build 

#"bugs in the claims that we make about them 

! " Testing and Development working together … 

! " But … 
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egg 

1 kg 

Testing has Limits: 

! " To be absolutely certain that the 

EP 2.0 will protect any egg from 
any weight under 1kg, we will 

need to prove it. 

! " "testing can be used to show 

the presence of bugs, but 
never to show their 

absence" [Edsger Dijkstra, 
1969] 
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Equational Reasoning: 

! " Functional Languages are Good for 
Equational Reasoning (Gofer!) 

! " Much of what follows is inspired by the 
work of Richard Bird 

! " Goal: to prove laws of the form e1=e2 
relating program fragments e1 and e2 

! " Goal: to calculate/synthesize efficient 
definitions of functions from clear, high-
level specifications 
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Laws of Numbers: 

If n is a natural number, then either: 

 n = 0; or 

 n = 1 + m for some (smaller) natural m 

Functions on natural numbers: 

 0     + n  =  n 

 (1+m) + n  =  1 + (m + n) 

Does this look at all familiar? 
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+ is associative: 

!n. !p. !q. (n + p) + q = n + (p + q) 

If n = 0, then 

 (n + p) + q 

 = (0 + p) + q     (because n = 0) 

 = p + q      (definition of +) 

 = 0 + (p + q)     (definition of +) 
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+ is associative: 

!n. !p. !q. (n + p) + q = n + (p + q) 

If n = (1+m), then 

 (n + p) + q 

 = ((1 + m) + p) + q    (because n=1+m) 

 = (1 + (m + p)) + q    (definition of +) 

 = 1 + ((m + p) + q)    (definition of +) 

 = 1 + (m + (p + q))    (induction) 

 = (1 + m) + (p + q)    (definition of +) 

 = n + (p + q)     (definition of +) 
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+ is associative: 

We’ve shown: 

$" The property holds for n = 0 

$" If the property holds for n = m, then it holds for n 
= (1 + m) 

$" So it holds for n = 1 

$" And for n = 2 

$" And for n = 3 

$" … 

In fact, we’ve shown that it holds for all n: 

    !n. !p. !q. (n + p) + q = n + (p + q) 
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Laws of Numbers: 

If n is a natural number, then either: 

 n = Zero; or 

 n = Succ m for some (smaller) natural m 

data Nat = Zero | Succ Nat 

Functions on natural numbers: 

 add Zero       n  = n 

 add (Succ m) n  = Succ (add m n) 



20 

add is associative: 

!n. !p. !q. add (add n p) q = add n (add p q) 

If n = Zero, then 

 add (add n p) q 

 = add (add Zero p) q   (because n = Zero) 

 = add p q     (definition of add) 

 = add Zero (add p q)   (definition of add) 
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add is associative: 

!n. !p. !q. add (add n p) q = add n (add p q) 

If n = Succ m, then 

  add (add n p) q 

  = add (add (Succ m) p) q    (because n=1+m) 

  = add (Succ (add m p)) q    (definition of +) 

  = Succ (add (add m p) q)    (definition of +) 

  = Succ (add m (add p q))    (induction) 

  = add (Succ m) (add p q)    (definition of +) 

  = add n (add p q)     (definition of +) 
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add is associative: 

We’ve shown: 

$" The property holds for n = Zero 

$" If the property holds for n = m, then it holds for n 
= Succ m 

$" So it holds for n = Succ Zero 

$" And for n = Succ (Succ Zero) 

$" And for n = Succ (Succ (Succ Zero)) 

$" … 

In fact, we’ve shown that it holds for all n: 

   !n. !p. !q. add (add n p) q = add n (add p q) 
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Laws in Haskell: 

We can apply these same ideas to many other 
Haskell datatypes, not just numbers 

Algebra for programs: 

! " Break into cases (no junk, no confusion) 

! " Induction (recursion) 

! " Equational reasoning 
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Where do Laws come From? 

Laws typically arise in one of three ways: 

! " From function definitions (with care) 
(x:xs) ++ ys = x : (xs ++ ys) 

! " From previously established laws 
map f . map g = map (f . g) 

! " From specifications of new functions 
sumSquares n = sum (map square [1..n]) 
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Referential Transparency: 

! "The ability to replace equals with 
equals 

#" If e1=e2, then …e1… = …e2… 

! "The inability to observe sharing 

#" let  x = e  in  (x,x)   =   (e, e) 

#" let  x = print 1 in (x,x) = (print 1, print 1) 
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Tools: 

! "Extensionality: 

#" f = g   !  "x. f x = g x 

! "Simple substitution/instantiation: 

#" From (f . g) x = f (g x), we can infer that 
((1+) . (2*)) n = 1 + 2*n 
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… continued: 

! "Case analysis: 

#" If xs :: [a], then xs = [], or xs = (y:ys) for 
some y and ys, or xs = # 

#" If b :: Bool, then b=False, b=True, or b=#$

! " Induction: 

#" If property P(xs) holds for xs = [] and for 
xs = #, and for (y:ys) whenever it holds 
for ys, then P(xs) holds for all lists xs. 
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Introducing Bottom, #: 

! " We treat every type in Haskell as having a special 

element called bottom, written #$

! " # represents the value produced by expressions 
that fail to terminate properly 
#" Non-termination 

#" Error (e.g., missing pattern matching case) 

#" Explicit call of error “… message …” 

! " Called “bottom” because it has the least amount 
of information of any value 
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Strictness: 

! "We say that a function is strict if it is 
guaranteed to evaluate its argument. 

! " Another way to say this: f is strict if, and 
only if f # = #$

! " Examples: 
#" (1+) and not are both strict 

#" (&&) and (||) are strict in their left arguments, 
but not in their right 

#" map is strict in its list argument (but not the 
function) 
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Example: 

! " Suppose we specify: 

 f :: [Int] -> [Int] 

 f = map (1+) 

! " Now we can calculate: 

  f [] 

= { by definition of f } 

  map (1+) [] 

= { by definition of map} 

  [] 
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… continued: 

! " We can also calculate: 
  f (x:xs) 

= { by definition of f } 

  map (1+) (x:xs) 

= { by definition of map } 

  (1+x) : map (1+) xs 

= { by definition of f } 

  (1 + x) : f xs 

! " Thus we have derived: 
 f    :: [Int] -> [Int] 

 f []  = [] 

 f (x:xs)  = (1+x) : f xs 
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Associativity of (++): 

Claim: xs++(ys++zs) = (xs++ys)++zs, for all 
xs, ys, and zs 

Proof by induction on xs: 

Base case: xs = [] 

 [] ++ (ys ++ zs) 

= { by definition of ++ } 

  ys ++ zs 

= { by definition of ++ } 

  ([] ++ ys) ++ zs 
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… continued: 

Base case: xs = # 

lhs:    # ++ (ys ++ zs) 

   = { ++ is strict in its first argument } 

      # 

rhs:    (# ++ ys) ++ zs 

   = { ++ is strict in its first argument } 

       # ++ zs 

   = { ++ is strict in its first argument } 

       # 
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… continued: 

Inductive case: (x:xs) 

   (x:xs) ++ (ys ++ zs) 

 = { by definition of ++ } 

  x : (xs ++ (ys ++ zs)) 

 = { by induction } 

  x : ((xs ++ ys) ++ zs) 

 = { by definition of ++ } 

  (x: (xs ++ ys)) ++ zs 

 = { by definition of ++ } 

  ((x:xs) ++ ys) ++ zs 
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Fold Right: 

A function from the prelude: 

 foldr :: (a -> b -> b) -> b -> [a] -> b 

 foldr (%) e [x0,x1,x2]  =  x0 % (x1 % (x2 % e)) 

Examples: 

 and  = foldr (&&) True 

 concat  = foldr (++) [] 

Definition: 

 foldr f e []  = e 

 foldr f e (x:xs)  = f x (foldr f e xs) 
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Fold Left: 

A function from the prelude: 

 foldl :: (a -> b -> a) -> a -> [b] -> a 

 foldl (%) e [x0,x1,x2]  =  ((e % x0) % x1) % x2 

Examples: 

 sum  = foldl (+) 0 

 product  = foldl (*) 1 

Definition: 

 foldl f e []  = e 

 foldl f e (x:xs)  = foldl f (f e x) xs 
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Scan Left: 

A function from the prelude: 

 scanl :: (a -> b -> a) -> a -> [b] -> [a] 

 scanl (%) e [x0,x1,x2] 

  = [ e, e%x0, (e%x0)%x1, ((e%x0)%x1)%x2] 

Specification: 

 scanl f e  = map (foldl f e) . inits 

 inits []  = [[]] 

 inits (x:xs)  = [] : map (x:) (inits xs) 
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Calculating scanl: 

It is easy to derive scanl f e [] = [e] 

For non empty lists: 

scanl f e (x:xs) 

= map (foldl f e) (inits (x:xs)) 

= map (foldl f e) ([] : map (x:) (inits xs)) 

= foldl f e [] : map (foldl f e) (map (x:) (inits xs)) 

= foldl f e [] : map (foldl f e . (x:)) (inits xs) 

= e : map (foldl f (f e x)) (inits xs) 

= e : scanl f (f e x) xs 
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Comparison: 

! " Specification: 

 scanl f e   = map (foldl f e) . inits 

! " Definition: 

 scanl f e []       = [e] 

 scanl f e (x:xs) = e : scanl f (f e x) xs 

! " The specification requires O(n2) applications of f 
on a list of length n while the definition uses only 
n applications for a list of the same length. 

! " But, in terms of the results that we obtain, we 
know that the two versions are equal! 
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Scan Right: 

A dual of scanl: 

 scanr  :: (a -> b -> b) -> b -> [a] -> [b] 

 scanr f e  = map (foldr f e) . tails 

 scanr (%) e [x0, x1, x2] 

        = [x0%(x1%(x2% e)), x1%(x2% e), x2% e, e] 

More efficient version: 

 scanr f e []   = [e] 

 scanr f e (x:xs)  = f x (head ys) : ys 

     where ys = scanr f e xs 
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Maximum Segment Sum: 

! " Given a sequence of numbers, find the 
subsegment whose sum is largest: 
#" Example: maximal subsegment sum for the list 

[-1, 2, -3, 5, -2, 1, 3, -2, -2, -3, 6] is 7 (for the 
segment [5, -2, 1, 3]) 

! " Simple solution: 
mss :: [Int] -> Int 

mss = maximum . map sum . segs 

 where segs = concat . map inits . tails 

! " Not a great performer … O(n3) 
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Calculate! 
 mss 

= {definition of mss} 

 maximum . map sum . segs 



43 

Calculate! 
 mss 

= {definition of segs} 

 maximum . map sum . concat . map inits . tails 
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Calculate! 
 mss 

=  {using map f . concat = concat . map (map f) } 

 maximum . concat . map (map sum) . map inits . tails 

(map f . concat) [xs1, xs2, xs3] 
    = map f (xs1 ++ xs2 ++ xs3) 

    = map f xs1 ++ map f xs2 ++ map f xs3 

(concat . map (map f)) [xs1, xs2, xs3] 
    = concat [map f xs1, map f xs2, map f xs3] 
    = map f xs1 ++ map f xs2 ++ map f xs3 
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Calculate! 
 mss 

=  { using map f . map g = map (f . g) } 

 maximum . concat . map (map sum . inits) . tails 

(map f . map g) [ x1, x2, x3 ] 
    = map f [ g x1, g x2, g x3 ] 

    = [ f (g x1), f (g x2), f (g x3) ] 

map (f . g) [ x1, x2, x3 ] 
    = [ (f . g) x1, (f . g) x2, (f . g) x3 ] 
    = [ f (g x1), f (g x2), f (g x3) ] 
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Calculate! 
 mss 

=  { the “bookkeeping law” } 

 maximum . map maximum . map (map sum . inits) . tails 

maximum . concat 
   = maximum . map maximum 

General form: 

   foldr f a . concat = foldr f a . map (foldr f a) 
 if f is associative with unit a 
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Calculate! 
 mss 

=  { Definition of scanl } 

 maximum . map maximum . map (scanl (+) 0) . tails 

Definition: 
  scanl f e = map (foldl f e) . inits 
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Calculate! 
 mss 

=  {using map f . map g = map (f . g) } 

 maximum . map (maximum . scanl (+) 0) . tails 

map f . map g = map (f . g)  
   (again …) 
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Calculate! 
 mss 

=  { fold-scan fusion } 

 maximum . map (foldr f 0) . tails 

     where f x y = max 0 (x + y) 

We can prove that: 
   maximum . scanl (+) 0 = foldr f 0 

(A special case of a general property 
called “Fold-scan fusion”) 
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Calculate! 
 mss 

=  { definition of scanr } 

 maximum . scanr f 0 

     where f x y = max 0 (x + y) 

Definition of scanr: 
   scanr f e = map (foldr f e) . tails 

A simple, linear time algorithm, 
courtesy of equational reasoning! 
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Calculate! 
 mss 

=  { definition of scanr } 

 maximum . scanr f 0 

     where f x y = max 0 (x + y) 

Remember: 
  scanr (%) e [x0, x1, x2] 
    = [x0%(x1%(x2% e)), 

 x1%(x2% e), 
 x2% e, 
 e] 

mss xs = loop 0 0 (reverse xs) 
 where 
   loop m v []       = m 
   loop m v (x:xs) = let y = max 0 (x+v) 
                             in loop (max m y) y xs 

This version of the definition is 
not very intuitive … but we know 

by construction that it is correct! 
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A Quick Check: 

Just to be sure, let’s load these definitions into Hugs 
and quickly check to see if they are equal … 

Main> quickCheck (\xs -> mss xs == mss' xs) 

OK, passed 100 tests. 

Main>  

Hmm, now that looks like another useful tool, 
doesn’t it … 

To Be Continued … 
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Summary: 

! " The ability to reason about code is essential if you 
care about its behavior (for example, in safety or 
security critical applications) 

! " Compilers rely on equivalences between program 
fragments to justify/validate some optimizations 

! " Functional Languages are Good for Equational 
Reasoning 

! " Referential transparency/lack of side effects 
makes reasoning more tractable 

! " It helps to build up a collection of laws and 
results that you can draw on in program 
verification or synthesis! 


