
1

CS 457/557: Functional
Languages

Lecture 1: Introduction

Mark P Jones
Portland State University

2

What is Functional
Programming?

3

What is Functional Programming?

!  An alternative to dysfunctional
programming?

!  Programming with functions?

!  Programming without side-effects?

4

What is Functional Programming?
!   Functional programming is a style of

programming that emphasizes the
evaluation of expressions, rather than
execution of commands

!   Expressions are formed by using functions
to combine basic values

!   A functional language is a language that
supports and encourages programming in a
functional style

5

Functions:
In a pure functional language:

!   The result of a function depends only on
the values of its inputs:
!  Like functions in mathematics
!  No global variables / side-effects

!   Functions are first-class values:
!  They can be stored in data structures
!  They can be passed as arguments or returned

as results of other functions

6

Functional Languages:

!  Pure, lazy evaluation, strong typing:
!  Haskell, Miranda, Orwell, …

!  Impure, strict evaluation, strong typing:
!  Standard ML (SML), Objective CAML (OCaml),

F#, …

!  Impure, strict evaluation, dynamic typing:
!  Lisp, Scheme, Erlang, …

!  Pure, strict evaluation, strong typing:
!  Relatively unexplored (Timber, Habit, …)

7

Good News, Bad News:

!  Good News: You can write Functional
Programs in almost any language

!  Bad News: You can write “C code” in a
functional language …

8

Example:

!  Write a program to add up the
numbers from 1 to 10

9

In C, C++, Java, C#, … :

int tot = 0;

for (int i=1; i<11; i++)

 tot = tot + i;

update

update

initialization

initialization
iteration

implicit result returned in the variable tot

10

In ML:

let fun sum i tot
 = if i>10
 then tot
 else sum (i+1) (tot+i)
in sum 1 0
end

(tail) recursion

accumulating parameter

initialization

result is the value of this expression

11

In Haskell:

sum [1..10]

the list of numbers to add combining
function

result is the value of this expression

12

Reflections:
!   I’ve tried to use “idiomatic” solutions in each

language

!   This example makes Haskell look good

!   But it wouldn’t be too difficult to adapt any one
solution to any of the other languages

!   An imperative version of the Haskell solution
would require linked list code that is built-in to
Haskell

!   An objective comparison between languages
should account for library code as well as the
main program

13

Reflections (continued):

!  What makes a good program?
!  correctness
!  clarity
!  conciseness (none of my solutions are

optimally concise!)
!  Performance (not really an issue here)

14

Raising the Level of Abstraction:

 "If you want to reduce [design time], you
have to stop thinking about something you
used to have to think about." (Joe Stoy,
quoted on the Haskell mailing list)

!   Example: memory allocation
!   Example: data representation
!   Example: order of evaluation
!   Example: (restrictive) type annotations

15

Computing by Calculating:
!   Calculators are a great tool

for manipulating numbers

!   Buttons for:
!  entering digits
!  combining values
!  using stored values

!   Not so good for manipulating
large quantities of data

!   Not good for manipulating
other types of data

42.0!

16

Computing by Calculating:
!   What if we could “calculate”

with other types of value?

!   Buttons for:
!  entering pixels
!  combining pictures
!  using stored pictures

!   I wouldn’t want to calculate a
whole picture this way!

!   I probably want to deal with
several different types of data at
the same time

17

Computing by Calculating:
!   Spreadsheets are

better suited for
dealing with larger
quantities of data

!   Values can be
named (but not operations)

!   Calculations (i.e., programs) are recorded so that
they can be repeated, inspected, modified

!   Good if data fits an “array”

!   Not so good for multiple types of data

18

Functional Languages:
!  Multiple types of data

!  Primitive types, lists, functions, …
!  Flexible user defined types …

!  Operations for combining values to build new
values (combinators)

!   Ability to name values and operations
(abstraction)

!   Scale to arbitrary size and shape data

!   “Algebra of programming” supports reasoning

19

Quick Introductions

20

Starting Hugs:
user$ hugs

__ __ __ __ ____ ___ ___

|| || || || || || ||__ Hugs 98: Based on the Haskell 98 standard

||___|| ||__|| ||__|| __|| Copyright (c) 1994-2005

||---|| ___|| World Wide Web: http://haskell.org/hugs

|| || Bugs: http://hackage.haskell.org/trac/hugs

|| || Version: September 2006 ___

Haskell 98 mode: Restart with command line option -98 to enable extensions

Type :? for help

Hugs>
The most important commands:

•  :q quit

•  :l file load file

•  :e file edit file

•  expr evaluate expression

21

The read-eval-print loop:

1.  Enter expression at the prompt
2.  Hit return
3. The expression is read, checked, and

evaluated
4. Result is displayed
5.  Repeat at Step 1

22

Simple Expressions:
Expressions can be constructed using:
!   The usual arithmetic operations:

1 + 2 * 3
!   Comparisons:

 1 == 2 'a' < 'z'
!   Boolean operators:

True && False not False

!   Built-in primitives:
 odd 2 sin 0.5

!   Parentheses:
odd (2 + 1) (1 + 2) * 3

!   Etc …

23

Expressions Have Types:
!  The type of an expression tells you what

kind of value you might expect to see if you
evaluate that expression

!  In Haskell, read “::” as “has type”

!  Examples:
!  1 :: Int, 'a' :: Char, True :: Bool, 1.2 :: Float, …

!  You can even ask Hugs for the type of an
expression: :t expr

24

Type Errors:
Hugs> 'a' && True

ERROR - Type error in application

*** Expression : 'a' && True
*** Term : 'a'

*** Type : Char

*** Does not match : Bool

Hugs> odd 1 + 2

ERROR - Cannot infer instance
*** Instance : Num Bool

*** Expression : odd 1 + 2

Hugs>

25

Pairs:
!  A pair packages two values into one

 (1, 2) ('a', 'z') (True, False)

!  Components can have different types
 (1, 'z') ('a', False) (True, 2)

!  The type of a pair whose first component is
of type A and second component is of type
B is written (A,B)

!  What are the types of the pairs above?

26

Operating on Pairs:

!   There are built-in functions for
extracting the first and second
component of a pair:

!  fst (True, 2) = True
! snd (0, 7) = 7

!   Is the following property true?
For any pair p, (fst p, snd p) = p

27

Lists:

!  Lists can be used to store zero or more
elements, in sequence, in a single value:
[] [1, 2, 3] ['a', 'z'] [True, True, False]

!  All of the elements in a list must have the
same type

!  The type of a list whose elements are of
type A is written as [A]

!  What are the types of the lists above?

28

Operating on Lists:
!   There are built-in functions for extracting

the head and the tail components of a list:
!  head [1,2,3,4] = 1
!  tail [1,2,3,4] = [2,3,4]

!   Conversely, we can build a list from a given
head and tail using the “cons” operator:

!  1 : [2, 3, 4] = [1, 2, 3, 4]

!   Is the following property true?
For any list xs, head xs : tail xs = xs

29

More Operations on Lists:
!  Finding the length of a list:

length [1,2,3,4,5] = 5

!  Finding the sum of a list:
sum [1,2,3,4,5] = 15

!  Finding the product of a list:
product [1,2,3,4,5] = 120

!  Applying a function to the elements of a
list:
map odd [1,2,3,4] = [True, False, True, False]

30

Continued …
!  Selecting an element (by position):

[1,2,3,4,5] !! 3 = 4

!  Taking an initial prefix (by number):
take 3 [1,2,3,4,5] = [1,2,3]

!  Taking an initial prefix (by property):
takeWhile odd [1,2,3,4,5] = [1]

!  Checking for an empty list:
null [1,2,3,4,5] = False

31

More ways to Construct Lists:

!  Concatenation:
[1,2,3] ++ [4,5] = [1,2,3,4,5]

!  Arithmetic sequences:
[1..10] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
[1,3..10] = [1, 3, 5, 7, 9]

!  Comprehensions:
[2 * x | x <- [1,2,3,4,5]] = [2, 4, 6, 8, 10]
[y | y <- [1,2,3,4], odd y] = [1, 3]

32

Strings are Lists:

!  A String is just a list of Characters
['w', 'o', 'w', '!'] = "wow!"
['a'..'j'] = "abcdefghij"
"hello, world" !! 7 = 'w'
length "abcdef" = 6
"hello, " ++ "world" = "hello, world"
take 3 "functional" = "fun"

33

Functions:

!  The type of a function that maps
values of type A to values of type B is
written A -> B

!  Examples:
!  odd :: Int -> Bool
!  fst :: (a, b) -> a (a,b are type variables)
!  length :: [a] -> Int

34

Operations on Functions:
!  Function Application. If f :: A -> B and x ::

A, then f x :: B

!  Notice that function application associates
more tightly than any infix operator:

 f x + y = (f x) + y

!  In types, arrows associate to the right:
 A -> B -> C = A -> (B -> C)

Example: take :: Int -> [a] -> [a]
 take 2 [1,2,3,4] = (take 2) [1,2,3,4]

35

Sections:

!  If ! is a binary op of type A -> B -> C,
then we can use “sections”:
!  (!) :: A -> B -> C
!  (expr !) :: B -> C (assuming expr::A)
!  (! expr) :: A -> C (assuming expr::B)

!  Examples:
!  (1+), (2*), (1/), (<10), …

36

Higher-order Functions:

!  map :: (a -> b) -> [a] -> [b]
!  map (1+) [1..5] = [2,3,4,5,6]

!  takeWhile :: (a -> Bool) -> [a] -> [a]
!  takeWhile (<5) [1..10] = [1,2,3,4]

!  (.) :: (a -> b) -> (c -> a) -> c -> b
!  (odd . (1+)) 2 = True

“composition”

37

Definitions:
!  So far, we’ve been focusing on expressions

that we might want to evaluate.

!  What if we wanted to:
!  Define a new constant (i.e., Give a name to the

result of an expression)?
!  Define a new function?

!  Definitions are placed in files with a .hs
suffix that can be loaded into the interpreter

38

Simple Definitions:

Put the following text in a file “defs.hs”:

greet name = "hello " ++ name

square x = x * x

fact n = product [1..n]

39

Loading Defined Values:
Pass the filename as a command line argument to
Hugs, or use the :l command from inside Hugs:

Main> :l defs

Main> greet "everybody"

"hello everybody"

Main> square 12

144

Main> fact 32

263130836933693530167218012160000000

Main>

40

Example:
Calculating Fractals

41

42

43

44

45

46

Calculating Fractals:
!   Based on my article “Composing Fractals” that

was published as a “functional pearl” in the
Journal of functional Programming

!   Flexible programs for drawing Mandelbrot and
Julia set fractals in different ways

!  No claim to be the best/fastest fractal drawing
program ever created!

!   Illustrates key features of functional programming
in an elegant and “calculational” style

!   As it happens, no recursion!

47

Mandelbrot Sequences:
type Point = (Float, Float)

next :: Point -> Point -> Point

next (u,v) (x,y) = (x*x-y*y+u, 2*x*y+v)

mandelbrot :: Point -> [Point]

mandelbrot p = iterate (next p) (0,0)

The source of all that
beauty & complexity!

Apply function repeatedly,
producing as many elements

as we like …

48

Converge or Diverge?
Fractals> mandelbrot (0,0)
 [(0.0,0.0),(0.0,0.0),(0.0,0.0),(0.0,0.0),(0.0,0.0),(0.0,0.0),

(0.0,0.0),^C{Interrupted}

Fractals> mandelbrot (0.1,0)
[(0.0,0.0),(0.1,0.0),(0.11,0.0),(0.1121,0.0),(0.1125664,0.0),

(0.1126712,0.0),(0.1126948,0.0) ^C{Interrupted}

Fractals> mandelbrot (0.5,0)
[(0.0,0.0),(0.5,0.0),(0.75,0.0),(1.0625,0.0),(1.628906,0.0),

(3.153336,0.0),(10.44353,0.0) ^C{Interrupted}

Fractals> mandelbrot (1,0)
[(0.0,0.0),(1.0,0.0),(2.0,0.0),(5.0,0.0),(26.0,0.0),(677.0,0.0),

(458330.0,0.0) ^C{Interrupted}

Fractals>

49

The Mandelbrot Set:
!   The Mandelbrot Set is the set of all points for

which the corresponding Mandelbrot sequence
converges

!  How can we test for this?

!  How can we visualize the results?

50

Testing for Membership:
fairlyClose :: Point -> Bool

fairlyClose (u,v) = (u*u + v*v) < 100

inMandelbrotSet :: Point -> Bool

inMandelbrotSet p = all fairlyClose (mandelbrot p)

An almost arbitrary
constant

This could take a long time …

52

Pragmatics:
!   For points very close to the edge, it may take

many steps to determine whether the sequence
will converge or not.

!   It is impossible to determine membership with
complete accuracy because of rounding errors

!   And besides, the resulting diagram is really dull!

!   If life gives you lemons … make lemonade!

53

Approximating Membership:
fracImage :: [color] -> Point -> color

fracImage palette = (palette!!)

 . length

 . take n

 . takeWhile fairlyClose

 . mandelbrot

 where n = length palette – 1

Now we’re using a palette of multiple colors
instead of a monochrome membership!

But how are we going to render this?

Only looks at
initial prefix

A pipeline of
functions …

Grids:

54

xmin xmax

ymin

ymax

"y =
(ymax-ymin)

(r-1)

"x= (xmax-xmin)
 (c-1)

c

r

55

Grids:
type Grid a = [[a]]

grid :: Int -> Int -> Point -> Point -> Grid Point

grid c r (xmin,ymin) (xmax,ymax)

 = [[(x,y) | x <- for c xmin xmax]

 | y <- for r ymin ymax]

for :: Int -> Float -> Float -> [Float]

for n min max = take n [min, min+delta ..]

 where delta = (max-min) / fromIntegral (n-1)

Give meaningful
names to types

Capture
recurring pattern

List comprehensions

56

Some Sample Grids:
mandGrid = grid 79 37 (-2.25, -1.5) (0.75, 1.5)

juliaGrid = grid 79 37 (-1.5, -1.5) (1.5, 1.5)

Names make it easier
to refer to previously

defined values!

57

Images:
type Image color = Point -> color

sample :: Grid Point -> Image color -> Grid color

sample points image

 = map (map image) points

Allow for different
types of “color”

Functions are just
regular values …

58

Putting it all together:
draw :: [color] ->

 Grid Point ->

 (Grid color -> pic) -> pic

draw palette grid render

 = render (sample grid (fracImage palette))

59

Example 1:
charPalette :: [Char]

charPalette = " ,.`\"~:;o-!|?/<>X+={^O#%&@8*$"

charRender :: Grid Char -> IO ()

charRender = putStr . unlines

example1 = draw charPalette mandGrid charRender

60

 ,,

 ,,

 ,,

 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,................,,,,,,,,,,,,,,,,,

 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,..........`````........,,,,,,,,,,,,,,

 ,,,,,,,,,,,,,,,,,,,,,,,,,............```":|~""```.......,,,,,,,,,,,

 ,,,,,,,,,,,,,,,,,,,,,,,,.............`````"~:oOo-$~"``........,,,,,,,,

 ,,,,,,,,,,,,,,,,,,,,,,..............``````""~:;-?+-;~""````.......,,,,,,

 ,,,,,,,,,,,,,,,,,,,,..............```````"""~:?>$$$$&/|:~""````.......,,,,

 ,,,,,,,,,,,,,,,,,,,..............`````""""~~~~:;o^$$$$$$!;:~~""""```.....,,,

 ,,,,,,,,,,,,,,,,,,.............```````""~;$<<oo!$|$>{$$$$>/X!$o:::;=~"`.....,,

,,,,,,,,,,,,,,,,..........``````````""""~~;!{$$=$$$$$$$$$$$$$$$$|8=o"``.....,

,,,,,,,,,,,,,,........```````"""""""""~~:o||+$$$$$$$$$$$$$$$$$$$$$$O-:""``.....

,,,,,,,,,,,.........````"-o~~~~~~~~~~~:;o/$$$$$$$$$$$$$$$$$$$$$$$$$$|;;~```....

,,,,,,,,,........`````""~;X!--o!^-oo;;;-X$$$$$$$$$$$$$$$$$$$$$$$$$$$$$+~"``....

,,,,,,,.......``````"""~::o/$$#$$$$$$|!?$$$$$$$$$$$$$$$$$$$$$$$$$$$$$?&~"``....

,,,,,......``````"""~:;;;-$$$$$$$$$$$${{$$$$$$$$$$$$$$$$$$$$$$$$$$$$$!:"```....

,,,,....```""~"~~~~::;!=$+$$?:~"```....

,,,,..`{$*@8$$/o:~""```....

,,,,....```""~"~~~~::;!=$+$$?:~"```....

,,,,,......``````"""~:;;;-$$$$$$$$$$$${{$$$$$$$$$$$$$$$$$$$$$$$$$$$$$!:"```....

,,,,,,,.......``````"""~::o/$$#$$$$$$|!?$$$$$$$$$$$$$$$$$$$$$$$$$$$$$?&~"``....

,,,,,,,,,........`````""~;X!--o!^-oo;;;-X$$$$$$$$$$$$$$$$$$$$$$$$$$$$$+~"``....

,,,,,,,,,,,.........````"-o~~~~~~~~~~~:;o/$$$$$$$$$$$$$$$$$$$$$$$$$$|;;~```....

,,,,,,,,,,,,,,........```````"""""""""~~:o||+$$$$$$$$$$$$$$$$$$$$$$O-:""``.....

,,,,,,,,,,,,,,,,..........``````````""""~~;!{$$=$$$$$$$$$$$$$$$$|8=o"``.....,

 ,,,,,,,,,,,,,,,,,,.............```````""~;$<<oo!$|$>{$$$$>/X!$o:::;=~"`.....,,

 ,,,,,,,,,,,,,,,,,,,..............`````""""~~~~:;o^$$$$$$!;:~~""""```.....,,,

 ,,,,,,,,,,,,,,,,,,,,..............```````"""~:?>$$$$&/|:~""````.......,,,,

 ,,,,,,,,,,,,,,,,,,,,,,..............``````""~:;-?+-;~""````.......,,,,,,

 ,,,,,,,,,,,,,,,,,,,,,,,,.............`````"~:oOo-$~"``........,,,,,,,,

 ,,,,,,,,,,,,,,,,,,,,,,,,,............```":|~""```.......,,,,,,,,,,,

 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,..........`````........,,,,,,,,,,,,,,

 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,................,,,,,,,,,,,,,,,,,

 ,,

 ,,

 ,,

draw charPalette mandGrid charRender

61

Example 2:
type PPMcolor = (Int, Int, Int)

ppmPalette :: [PPMcolor]

ppmPalette = [(((2*i) `mod` (ppmMax+1)), i, ppmMax-i)

 | i <- [0..ppmMax]]

ppmMax = 31 :: Int

ppmRender :: Grid PPMcolor -> [String]

ppmRender g = ["P3", show w ++ " " ++ show h, show ppmMax]

 ++ [show r ++ " " ++ show g ++ " " ++ show b

 | row <- g, (r,g,b) <- row]

 where w = length (head g)

 h = length g

draw ppmPalette mandGridHi ppmRender

63

Down with Tangling!
!   Changes to a program may require modifications

of the source code in multiple places

!   The implementation of a program feature may be
“tangled” through the code

!   Programs are easier to understand and maintain
when important changes can be isolated to a
single point in the code (and, perhaps, turned
into a parameter)

!   A simpler example:
!  Calculate the sum of the squares of the numbers

from 1 to 10
!  sum (map square [1..10])

64

Summary:
!   An appealing, high-level approach to

program construction in which independent
aspects of program behavior are neatly
separated

!   It is possible to program in a similar
compositional / calculational manner in
other languages …

!  … but it seems particularly natural in a
functional language like Haskell …

