CS 457/557: Functional
Languages

Lecture 1: Introduction

Mark P Jones
Portland State University

What is Functional
Programming?

What is Functional Programming?

@ An alternative to dysfunctional
programming?

@ Programming with functions?

@ Programming without side-effects?

What is

Functional Programming?

€ Functional programming is a style of
programming that emphasizes the
evaluation of expressions, rather than
execution of commands

@ Expressions are formed by using functions
to combine basic values

@ A functional language is a language that

suppor

'S and encourages programming in a

functional style

4

Functions:

In a pure functional language:

€ The result of a function depends only on
the values of its inputs:
s Like functions in mathematics
= No global variables / side-effects

€ Functions are first-class values:

= They can be stored in data structures

= They can be passed as arguments or returned
as results of other functions

Functional Languages:

@ Pure, lazy evaluation, strong typing:
= Haskell, Miranda, Orwell, ...

@ Impure, strict evaluation, strong typing:

= Standard ML (SML), Objective CAML (OCaml),
F#, ...

@ Impure, strict evaluation, dynamic typing:
= Lisp, Scheme, Erlang, ...

@ Pure, strict evaluation, strong typing:
= Relatively unexplored (Timber, Habit, ...)

Good News, Bad News:

@®Good News: You can write Functional
Programs in almost any language

®Bad News: You can write “C code” in a
functional language ...

Example:

@ Write a program to add up the
numbers from 1 to 10

In C, C++, Java, C#, ... :

initialization

/%;Z//

int tot = O;/%éiz//

for (1nt 1=1; 1<11;

tot = tot + 1;

update

initialization

update

i4+)

iteration
A

implicit result returned in the variable tot

In ML: accumulating parameter

L

let fun sum 1 tot
= 1f 1>10
then tot
else sum (1+1) (tot+1)

in sum 1 O

end . .
(tail) recursion

initialization

result is the value of this expression

In Haskell:

S Um

/I

[1.

.10]

AN

combining
function

result is the value of this expression

the list of numbers to add

11

Reflections:

@ ['ve tried to use “idiomatic” solutions in each
language

@ This example makes Haskell look good

@ But it wouldn't be too difficult to adapt any one
solution to any of the other languages

€ An imperative version of the Haskell solution
would require linked list code that is built-in to
Haskell

€ An objective comparison between languages
should account for library code as well as the
main program

12

Reflections (continued):

®\What makes a good program?
m correctness
= Clarity

m conciseness (none of my solutions are
optimally concise!)

= Performance (not really an issue here)

13

Raising the Level of Abstraction:

"If you want to reduce [design time], you
have to stop thinking about something you
used to have to think about." (Joe Stoy,
quoted on the Haskell mailing list)

@ Example: memory allocation

€ Example: data representation

€ Example: order of evaluation

@ Example: (restrictive) type annotations

14

Computing by Calculating:

@ Calculators are a great tool
for manipulating numbers

€ Buttons for:

» entering digits
= combining values
= Using stored values

€ Not so good for manipulating
large quantities of data

€ Not good for manipulating
other types of data

Computing by Calculating:

€ What if we could “calculate”
with other types of value?

€ Buttons for:

= entering pixels
= combining pictures
= Using stored pictures

€ [wouldnt want to calculate a
whole picture this way!

€ I probably want to deal with
several different types of data at
the same time

Computing by Calculating:

006 ™ travel plans.xls

@ SpreadSheetS are <1> 8 Wintzr Spn'r?g Sum?ner Fall - FS
better suited for 12ue v sm owm m
deallng Wlth |al‘ger ?Cost | 96.79 47.32 225.00 50.89] =1L;(Mn§msiuelsn)ur,nbmr)

8 Miles Per Gallon: 28

quantities of data -

11
12

v

<< > Sheetl))
CE'E - "1 Sheet1 ‘ <»M
50—

€ Values can be
named (but not operations)

€ Calculations (i.e., programs) are recorded so that
they can be repeated, inspected, modified

€ Good if data fits an “array”

€ Not so good for multiple types of data

17

Functional Languages:

@ Multiple types of data
= Primitive types, lists, functions, ...
= Flexible user defined types ...

@ Operations for combining values to build new
values (combinators)

@ Ability to name values and operations
(abstraction)

@ Scale to arbitrary size and shape data

@ “Algebra of programming” supports reasoning

18

Quick Introductions

Starting Hugs:

user$ hugs

| L] L] N Hugs 98: Based on the Haskell 98 standard
| | N N e Copyright (c) 1994-2005

[1===11 World Wide Web: http://haskell.org/hugs

| | || Bugs: http://hackage.haskell.org/trac/hugs

| | | | Version: September 2006

Haskell 98 mode: Restart with command line option -98 to enable extensions

e fen e The most important commands:
° g quit
o :| file load file

o :¢ file edit file

e expr evaluate expression

20

The read-eval-print loop:

1. Enter expression at the prompt

2. Hit return

3. The expression is read, checked, and
evaluated

4. Result is displayed
5. Repeat at Step 1

21

Simple Expressions:

Expressions can be constructed using:

@ The usual arithmetic operations:

1+2*3
€ Comparisons:
1 —_—

€ Boolean operators:

True && False
@ Built-in primitives:

odd 2
@ Parentheses:

odd (2 + 1)
@ Etc ...

Ial < IZI
not False
sin 0.5

(1+2)*3

22

Expressions Have Types:

@ The type of an expression tells you what
kind of value you might expect to see if you
evaluate that expression

@ In Haskell, read ™::" as “has type”

@ Examples:
= 1::Int, '@’ :: Char, True :: Bool, 1.2 :: Float, ...

@ You can even ask Hugs for the type of an
expression: :t expr

23

Type Errors:

Hugs> 'a' && True
ERROR - Type error 1in application

** ok Expression : 'a' && True
**% Term : 'a’

*xx Type : Char

*** Does not match : Bool

Hugs> odd 1 + 2

ERROR - Cannot 1infer 1nstance
*** Instance : Num Bool

*** Expression : odd 1 + 2

Hugs>

24

Pairs:

@ A pair packages two values into one
(1, 2) (‘a', '2") (True, False)

€ Components can have different types
(1, 'Z") (‘a', False) (True, 2)

@ The type of a pair whose first component is
of type A and second component is of type
B is written (A,B)

@ What are the types of the pairs above?

25

Operating on Pairs:

@ There are built-in functions for
extracting the first and second
component of a pair:

m fst (True, 2) = True
asnd (0,7) =7

@ [s the following property true?
For any pair p, (fstp, snd p) =p

26

Lists:

@ Lists can be used to store zero or more
elements, in sequence, in a single value:

[1 [1,2,3] ['&','Z'] [True, True, False]

@ All of the elements in a list must have the
same type

@ The type of a list whose elements are of
type A is written as [A]

@ What are the types of the lists above?

27

Operating on Lists:

€ There are built-in functions for extracting
the head and the tail components of a list:

= head [1,2,3,4] = 1
« tail [1,2,3,4] = [2,3,4]

@ Conversely, we can build a list from a given
head and tail using the “cons” operator:

«1:[2,3,4] =11, 2, 3, 4]

@ Is the following property true?
For any list xs, head xs : tail xs = xs 28

More Operations on Lists:

@ Finding the length of a list:
length [1,2,3,4,5] =5

@ Finding the sum of a list:
sum [1,2,3,4,5] = 15

@ Finding the product of a list:
product [1,2,3,4,5] = 120

@ Applying a function to the elements of a
list:
map odd [1,2,3,4] = [True, False, True, False]

29

Continued ...

@ Selecting an element (by position):
[1,2,3,4,5] 113 =4

@ Taking an initial prefix (by number):
take 3 [1,2,3,4,5] = [1,2,3]

@ Taking an initial prefix (by property):

takeWhile odd [1,2,3,4,5] = [1]

@ Checking for an empty list:
null [1,2,3,4,5] = False

30

More ways to Construct Lists:

€ Concatenation:
[1,2,3] ++ [4,5] = [1,2,3,4,5]

@ Arithmetic sequences:
[1..101=11,2,3,4,5,6,7, 8,9, 10]
[1,3..10] =[1, 3, 5, 7, 9]

@ Comprehensions:
[2 * X | X <- [112131415]]
[y ly<-[1,2,3,4], 0ddy]

4, 6, 8, 10]

=2,
=[1,3]

31

Strings are Lists:

@A String is just a list of Characters
['w', o', 'w', 'I'] = "wow!"
['a'..']'] = "abcdefghij”
"hello, world" Il 7 ='W
length "abcdef" = 6
"hello, " ++ "world" = "hello, world"
take 3 "functional" = "fun”

32

Functions:

@ The type of a function that maps
values of type A to values of type B is
written A -> B

@ Examples:
= 0dd :: Int -> Bool
mfst::(a, b)->a (a,bare type variables)
= length :: [a] -> Int

33

Operations on Functions:

@ Function Application. If f:: A-> B and x ::
A thenfx::B

@ Notice that function application associates
more tightly than any infix operator:

fx+y = (fx)+vy

@ In types, arrows associate to the right:
A->B->C=A->(B->0C)
Example: take :: Int -> [a] -> [a]
take 2 [1,2,3,4] = (take 2) [1,2,3,4]

34

Sections:

@®If ® is a binary op of type A-> B -> C,
then we can use “sections”:
s (®) A->B->C
s (expr @) :: B-> C (assuming expr::A)
s (®expr):: A->C (assuming expr::B)

@ Examples:
« (14), (2%), (1/), (<10), ...

35

Higher-order Functions:

®map :: (a->b)->[a] -> [b]
= map (1+) [1..5] = [2,3,4,5,6]

@®takeWhile :: (a -> Bool) -> [a] -> [a]
= takeWhile (<5) [1..10] = [1,2,3,4]

®():(@a->b)->(c->a)->c->b
= (0odd . (1+)) 2 = True

\L“com position”} 36

Definitions:

@ So far, we've been focusing on expressions
that we might want to evaluate.

® What if we wanted to:

= Define a new constant (i.e., Give a name to the
result of an expression)?

s Define a new function?

@ Definitions are placed in files with a .hs
suffix that can be loaded into the interpreter

37

Simple Definitions:

Put the following text in a file “defs.hs”:
greet name = "hello " ++ name
square X = X * X

fact n = product [1..n]

38

Loading Defined Values:

Pass the filename as a command line argument to
Hugs, or use the :I command from inside Hugs:

Main> :1 defs

Main> greet "everybody"

"hello everybody"

Main> square 12

144

Main> fact 32
2063130836933693530167218012160000000

Main> 29

Example:
Calculating Fractals

Calculating Fractals:

@ Based on my article "Composing Fractals” that
was published as a “functional pearl” in the
Journal of functional Programming

@ Flexible programs for drawing Mandelbrot and
Julia set fractals in different ways

€ No claim to be the best/fastest fractal drawing
program ever created!

@ Illustrates key features of functional programming
in an elegant and “calculational” style

@ As it happens, no recursion!
46

Mandelbrot Sequences:

type Point = (Float, Float)

next :: Point -> Point -> Point

next (u,v) (x,y) = (x*x-y*y+u, 2*x*y+v)
The source of all that
beauty & complexity!

mandelbrot :: Point -> [Point]

mandelbrot p = iterate (next p) (0,0)

I

Apply function repeatedly,
producing as many elements
as we like ...

47

Converge or Diverge?

Fractals> mandelbrot (0,0)

[(0.0,0.0), (0.0,0.0),(0.0,0.0),(0.0,0.0),(0.0,0.0),(0.0,0.0),
(0.0,0.0),"C{Interrupted}

Fractals> mandelbrot (0.1,0)

(¢(6.0,0.0),¢0.1,0.0),(¢0.11,0.0), (0.1121,0.0), (0.1125604,0.0),
(0.1126712,0.0), (0.1126948,0.0) "C{Interrupted}

Fractals> mandelbrot (0.5,0)

[(0.0,0.0), (0.5,0.0), (0.75,0.0), (1.0625,0.0), (1.628906,0.0),
(3.153336,0.0), (10.44353,0.0) “C{Interrupted}

Fractals> mandelbrot (1,0)

([¢(6.0,0.0),(¢(1.0,0.0), (2.0,0.0), (5.0,0.0), (26.0,0.0), (677.0,0.0),
(458330.0,0.0) "“C{Interrupted}

Fractals> 48

The Mandelbrot Set:

€ The Mandelbrot Set is the set of all points for
which the corresponding Mandelbrot sequence
converges

€ How can we test for this?

€ How can we visualize the results?

49

Testing for Membership:

fairlyClose :: Point -> Bool
fairlyClose (u,v) = (u*u + v*v) < 100

™~

An almost arbitrary
constant

1inMandelbrotSet :: Point -> Bool
inMandelbrotSet p = all fairlyClose (mandelbrot p)

A

This could take a long time ...

50

Pragmatics:

@ For points very close to the edge, it may take
many steps to determine whether the sequence
will converge or not.

@ It is impossible to determine membership with
complete accuracy because of rounding errors

€ And besides, the resulting diagram is really dull!

@ If life gives you lemons ... make lemonade!

52

Approximating Membership:

fracImage :: [color] -> Point -> color
fracImage palette = (palette!!)
1 Only looks at
. length e :
initial prefix
. take n

. takeWhile fairlyClose
A pipeline of . mandelbrot
functions ... where n = length palette - 1

Now we're using a palette of multiple colors
instead of a monochrome membership!

But how are we going to render this? 53

Grids:

Ymax

(Ymax~Ymin)

(r-1)

Ymin

min

6x= (Xmax_xmin)

(c-1)

Max

54

Grids:

type Grid a =

[[al] =

Give meaningful
names to types

grid :: Int -> Int -> Point -> Point -> Grid Poilnt

grid ¢ r (xmiln,ymin)

= [[(x,

T

y) | x <-
|y <=

List comprehensions

(xmax, ymax)

for ¢ xmin xmax]

for r ymin ymax |

for Int -> Float -> Float ->
for n min max = take n [min, min+tdelta ..]
where delta = (max-min) / fromIntegral
T
Capture

recurring pattern

[Float]

(n—-1)

55

Some Sample Grids:

mandGrid

JuliaGrid

= grid 79 37 (-2.25,

— grid 79 37 (-1

AN

Names make it easier
to refer to previously

defined values!

.,

-1.5)

-1.5)

(0.75,

(1

.,

1

1.5)

. D)

56

Images: Allow for different

types of “color”

7

type Image color = Poilint -> color

sample :: Grid Point -> Image color -> Grid color
sample points 1image
= map (map 1mage) points

AN

Functions are just
regular values ...

57

Putting it all together:

draw :: [color] ->
Grid Point ->
(Grid color -> pic) -> pic
draw palette grid render

= render (sample grid (fracImage palette))

58

Example 1:

charPalette :: [Char]

charPalette =" , o \"~zro0- | 2/<OX+={"0#%&@8*S"
charRender :: Grid Char -> IO ()

charRender = putStr . unlines

examplel = draw charPalette mandGrid charRender

59

rrrg

rrrg

rrrg

A A AV AN A A A A AN AV A A AN A A A A A A AN A A A A A A A A A N R R rrrrrrrrrrrrrrrro
A A AT AN A I O S R B rrrrrrrrrrrroro
" |~""
[A A A A A A A A A A A A A A A A A T I I A A rrrrrrrrororor
\\\\\ "o . _ "
A A A A A A A A A A A AN A AN A A A L R R ~:000 $N -------- rrrrorororo
“““ ww —2 44—
[ARA A AV AN AV AN AN AN A A AN A A A A A A A A A A R R Y A L A A rrrororor
\\\\\\\ www . PR LR L AR
A A AV A A A A A A AN A A A A A A A AR B R LI R N -?>$$$$&/|- ------- rrorr
\\\\\ vvvvvvvaNNN.. A |..annnn\\\
[AVAN AN AV AN AV A AN AV A AV AN AN AN AN A A A AL B K B B R BN o $$$$$$ ----- rror
\\\\\\\ W . | | R
A A A AV A A A A A A A A AR B B A $<<OO $|$>{$$$$>/X $O ----- rr

P g e n e ;!{$$f$$$$$$$$$$$$$$$$|8—o"\\ ,
PR e MmN A~ 2o [+55555555555555555555550- " T Ll
NN R AR it HEECVEEEEEEEEEEEEEEEEEEEEEE N
P rr e "M XI==01%-00; 7 -XSS8SSSS88S08SS888S88SS888SSSSH~" T L
P r e T MMM 10/ SSHSSSSSS] IRSS0S885598888555588885555588828~"

Py e T MMM —585555555555{{$5555555555555555555555555555 ! T L
R R e e e R R R I e e e R R R e e e R e e R R X I
rrrre. {SFRBSSSSSSSS0858550508855555588555558588855558888855888888 /0~ L
prrgeeee M e =54 5555555555555 55555555555555555555555555555 0~ T T L
P e T R T A F A EEEEEEEE R R EEEEEEEEEEEE R R R R R L

P e T MMM 10/ SSHSSSSSS 7088555550885 55558888555888888e~" T L
PEE e e "M X --0 1M -007 7 i XSS5 555555555555555555555885+~" T T L L
NN R AR it HEEVEEEEEEEEEEEEEEEEEEEEE N
PRI e N~ 20| [+58558888588588885885880-"" T L
PR R e T M L {S8=8088558585885585(88%=0""". ,

\\\\\\\ wu . | | PR | B
A A A A A A A A A A A A A A A NI$<<OO-$I$>{$$$$>/X-$O---r N e e e e rr

“““ WU e e AN [PV LR TR TR IR
rrrrrrrrrrrrrrrrrrroscsss e 'IO SSSSSS‘I' ----- rrr

\\\\\\\ wun . VR LR TR
Frrrrrrrrrrrrrrrrrrgoccccee e '?>$$$$&/|' """" rrrr
\\\\\\ LALDVE I NG A
AN NN A A A A A A A I A P e e e e e rrroror
\\\\\ LLIPE Qo n
rrrrrrrrrrrrrrrrrrrrrrrgyoccees oo 'OOO$ """" rrrrrrrir
U PVLAL

A A A A A A A A A A A A A A A T R I rrrrrrrrror
rrrrrrrrrrrrrrrrrrrrrrrrrrrgyoesssseseee s rrrrrrrrrrrririr

draw charPalette mandGrid charRender ¢

rrrg

Example 2:

type PPMcolor = (Int, Int, Int)
ppmPalette [PPMcolor]
ppmPalette = [(((2*1) "mod (ppmMax+l)), 1, ppmMax-i)
| 1 <= [0..ppmMax]]
pprmMax = 31 :: Int
ppmRender :: Grid PPMcolor -> [String]
ppmRender g = ["P3", show w ++ " " +4+ show h, show ppmMax]

++ [show r ++ " " ++4 show g ++ " " ++ show b
| row <- g, (r,g,b) <= row]
where w = length (head qg)
h = length g

61

» <=

4 22

; S
‘1'.,4__.‘ g

1..12

draw ppmPalette mandGridH1 ppmRender

Down with Tangling!

€ Changes to a program may require modifications
of the source code in multiple places

€ The implementation of a program feature may be
“tangled” through the code

€ Programs are easier to understand and maintain
when important changes can be isolated to a
single point in the code (and, perhaps, turned
into a parameter)

@ A simpler example:

= Calculate the sum of the squares of the numbers
from 1 to 10

= sum (map square [1..10]) 63

Summary:

€ An appealing, high-level approach to
program construction in which independent

aspec

s of program behavior are neatly

separated

@ It is possible to program in a similar
compositional / calculational manner in

other

@ ... but

languages ...

it seems particularly natural in a

functional language like Haskell ...

64

