
Push Down Automata

Push Down Automata (PDAs) are ε-NFAs 
with stack memory. 

Transitions are labeled by an input symbol 
together with a pair of the form X/α. 

The transition is possible only if the top of 
the stack contains the symbol X

After the transition, the stack is changed by 
replacing the top symbol X with the string 
of symbols α. (Pop X, then push symbols 
of α.) 



Example

PDAs can accept languages that are not 
regular. The following one accepts:

L={0i1j | 0 ≤ i ≤ j} 

s q

0, X/XX

0, Z0/XZ0

p

1, X/ε

1, X/ε Λ, Z0/Z0

1, Z0/Z0

Λ, Z0/Z0



Definition

A PDA is a 7-tuple P=(Q,Σ,Γ,δ,q0,Z0,F) where Q, Σ, 
q0, F are as in NFAs, and

• Γ is the stack alphabet.

• Z0 ∈ Γ is the start symbol; it is assumed that 
initially the stack contains only the symbol Z0.

• δ: Q ×(Σ∪{ε}) × Γ → P(Q × Γ*) is the 
transition function:   given a state, an input 
symbol (or Λ), and a stack symbol, it gives us a 
finite number of pairs (q,α), where q is the next  
state and α is the string of stack symbols that 
will replace X on top of the stack. 



In our example, the transition from s to s labeled 
(0,Z0/XZ0) corresponds to the fact (s,XZ0)∈ 
δ(s,0,Z0).  A complete description of the 
transition function in this example is given by

δ(s,0,Z0) = {(s,XZ0)}
δ(s,0,X) =  {(s,XX)}
δ(s,Λ,Z0) = {(q,Z0)}
δ(s,1,X) = {(p,ε)}
δ(p,1,X) = {(p,ε)}
δ(p,Λ,Z0) = {(q,Z0)}
δ(q,1,Z0) = {(q,Z0)}

and 
δ(q,a,Y)=∅ for all other possibilities. 

s q

0, X/XX

0, Z0/XZ0

p

1, X/ε

1, X/ε Λ, Z0/Z0

1, Z0/Z0

Λ, Z0/Z0



Instantaneous Descriptions and Moves of PDAs

IDs (also called configurations) describe 
the execution of a PDA at each instant. An 
ID is a triple (q,w,α), with this intended 
meaning:

• q is the current state
• w is the remaining part of the input
• α is the current content of the stack, with 

top of the stack on the left.



The relation |- describes possible moves from one ID 
to another during execution of a PDA. If δ(q,a,X) 
contains (p,α), then 

(q,aw,Xβ) |- (p,w,αβ)
is true for every w and β. 

The relation |-* is the reflexive-transitive closure of |-

We have (q,w,a)  |-*  (q',w',a')  when  (q,w,a) leads 
through a sequence (possibly empty) of moves to 
(q',w',a')



Properties of |-

Property 1.
If (q,x,α) |-* (p,y,β)
Then (q,xw,αγ) |-* (p,yw,βγ)

If you only need some prefix of the input (x) and stack (α) to 
make a series of transitions, you can make the same 
transitions for any longer input and stack.

Property 2. 
If (q,xw,α) |-* (p,yw,β)
Then (q,x,α) |-* (p,y,β)

It is ok to remove unused input, since a PDA cannot add 
input back on once consumed.



The Language of a PDA

A PDA as above accepts the string w iff
(q0,w,Z0) |-*  (p,Λ,α)  is true for some final 

state p and some α. (We don't care what's 
on the stack at the end of input.) 

The language L(P) of the PDA P is the set of 
all strings accepted by P.



Here is  the chain of IDs showing that the string 
001111 is accepted by our example PDA:

(s,001111,Z0)  
|- (s,01111,XZ0)
|- (s, 1111,XXZ0)
|- (p,111,XZ0)
|- (p,11,Z0)
|- (q,11,Z0)
|- (q,1,Z0)
|- (q,ε,Z0)

s q

0, X/XX

0, Z0/XZ0

p

1, X/ε

1, X/ε Λ, Z0/Z0

1, Z0/Z0

Λ, Z0/Z0



The language of the following PDA is 
{0i1j | 0 < i ≤ j}*.

How can we prove this?

s qp

0, X/XX

0, Z0/XZ0 1, X/ε

1, X,ε
1, Z0/Z0

Λ, Z0/Z0



Example

A PDA for the language of balanced 
parentheses:

qp

(, Z0/XZ0
(, X/XX

Λ, Z0/Z0

), X/ε



Acceptance by Empty Stack

Define N(P) to be the set of all strings w
such that  
(q0,w,Z0) |-* (q,Λ,ε)

for some state q. These are the strings P 
accepts by empty stack. Note that the set 
of final states plays no role in this 
definition. 

Theorem. A language is L(P1) for some 
PDA P1 if and only if it is N(P2) for some 
PDA P2. 



Proof 1

1. From empty stack to final state.

Given P2 that accepts by empty stack, get P1 by adding a new 
start state and a new final state as in the picture below. 
We also add a new stack symbol X0 and make it the start 
symbol for P1's stack.

p0

Pf

Λ, X0/Z0X0 q0

Λ, X0/ε
(add this transition from all states of 

P2 to new state Pf)

P2



Proof 2
2. From final state to empty stack.

Given P1, we get P2 again by adding a new 
start state, final state and start stack 
symbol. New transitions are seen in the 
picture.

p0

P

Λ, X0/Z0X0 q0

Λ, Γ/ε

P2

Λ, Γ/ε

Λ, Γ/ε



Equivalence of CFGs and PDAs

The equivalence is expressed by two theorems.

Theorem 1. Every context-free language is 
accepted by some PDA.

Theorem 2. For every PDA M, the language L(M) 
is context-free.

We will describe the constructions, see some 
examples and proof ideas.



Given a CFG  G=(V,T,P,S), we define a PDA 
M=({q},T, T ∪ V, δ,q,S), with δ given by 

– If A ∈ V, then δ(q,ε,A) = { (q,α)  |  A → α is in P}
– If a ∈ T, then δ(q,a,a) = { (q,ε) }

1. Note that the stack symbols of the new PDA contain all the 
terminal and non-terminals of the CFG

2. There is only 1 state in the new PDA, all the rest of the info 
is encoded in the stack.

3. Most transitions are on Λ, one for each production
4. The other transitions come one for each terminal.

The automaton simulates leftmost derivations of G, accepting 
by empty stack. For every intermediate sentential form 
uAα in the leftmost derivation of w (note first that w = uv
for some v), M will have Aα on its stack after reading u. 
At the end (case u = w) the stack will be empty.



Example

For our old grammar:  S → SS | (S) | Λ
the automaton M will have five transitions, 

all from q to q:
1. δ(q, Λ,S)  = (q, SS)                     S → SS
2. δ(q, Λ,S)  = (q, (S) )                   S → (S) 
3. δ(q, Λ,S)  = (q, Λ )                      S → Λ
4. δ(q, (, ( ) = (q,Λ)
5. δ(q, ), ) ) = (q,Λ)

1. Most transitions are on Λ, one for each production
2. The other transitions come one for each terminal.



Compare

Now compare the leftmost derivation 
S ⇒ SS ⇒ (S)S ⇒ ((S))S ⇒ (())S ⇒ (())(S) ⇒ (())()

with the M's execution on the same string given as 
input:
(q, "(())()" ,S     )  |- [1]
(q, "(())()" ,SS    )  |- [2]
(q, "(())()" ,(S)S  )  |- [4]
(q, "())()"  ,S)S   )  |- [4] 
(q, "())()"  ,(S))S )  |- [4]
(q, "))()"   ,S))S  )  |- [3]
(q, "))()"   ,))S   )  |- [5]
(q, ")()"    ,)S    )  |- [5]
(q, "()"     ,S     )  |- [2]
(q, "()"     ,(S)   )  |- [4]
(q, ")"      ,S)    )  |- [3]
(q, ")"      ,)     )  |- [5]
(q, ε ,ε )

1. δ(q, Λ,S)  = (q, SS)        S → SS
2. δ(q, Λ,S)  = (q, (S) )      S → (S) 
3. δ(q, Λ,S)  = (q, ε )         S → Λ
4. δ(q, (, ( ) = (q,Λ)
5. δ(q, ), ) ) = (q,Λ)



Next time

We’ll prove the construction correct, 

Look at the inverse construction. PDA→CFL
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