Post Algorithms, Systems, and Computable Functions

Emil Post

- The Mathematician Emil Post developed a number of computing techniques
 - Post Algorithms
 - Transforms 1 string into another string
 - Post Systems
 - Generates (a possibly infinite) sets of strings (like a Regular Expression, etc)
 - Post computable functions
 - Formalizes what a computable function is (like a Turing machine)

Post Algorithm

- An alphabet S
- A set of variables V
- A finite set of productions
 - Of the form $s \rightarrow t$
 - Both s and t elements of $(S \cup V)^*$
 - If **v** appears in **t** then **v** must also appear in **s**
 - -Some production are labeled with Halt
 - -No order is implied by the productions

Steps in a Post Algorithm

- The is a single string that is the focus of the algorithm. It is given an initial value as input.
- If the focus matches the lhs (s) of some production s -> t, then the focus is updated to match the rhs (t) of that production.
- Any variables appearing in s or t can match any string of symbols in S* (including Λ).
- Example
 - Let $S = \{a,b\}$ let $V = \{S,T\}$
 - Production = SaT -> SbT
 - Focus = abac
 - There are two possibilities
 - 1. SaT matches abac, where $S=\Lambda$ and T = bac
 - This changes the focus to: bbac
 - 2. SaT matches abac, where S = ab and T = c
 - This changes the focus to abbc

Termination

- Steps are repeated until
 - 1. A production is used that is labeled halt
 - 2. No production applies to the focus.
- 1. When the steps terminate, the value of the focus becomes the output of the process
- 2. A post algorithm transforms a string into another string
- 3. The process is non-deterministic (why?)

Example

- S = {a,b,x,y}
- V = {S,T}
- Prod =
 - 1. SaT -> SxxT
 - 2. SbT -> SyT
 - 3. SxyT -> SyxT

aba	by 1
xxba	by 1
xxbxx	by 2
ххухх	by 3
хуххх	by 3
ухххх	halt

A different path Xxya Xyxa Yxxa yxxxx

Post Systems

- Post systems define (possible infinite) sets of strings (just like regular expressions).
- Post systems are strictly more powerful than the Regular languages or the Context Free Languages.
- Post systems are equivalent to Turing Machines
- Post systems are a generalization of Post Algorithms.

Post System Definition

- An alphabet S
- A finite set of axioms in S*
 - Think of these as the initial set of strings in the set of strings we are generating
- A set of inference rules, which are Post style productions.
 - Think of these as rules to add new things to the set of strings we are generating
 - An inference rule may multiple lhs
 - Eg. $s_1, s_2, s_3 \rightarrow t$
- For some systems the inference rules may add an infinite number of new strings, so the set produced may be infinite.

Steps in a Post system

- Given a set of axioms (strings in the focus)
- Given an inference rule
 - s₁,s₂,s₃ -> t
 - If all the s_i match some string in the axiom set
 - Add the matching rhs (t) to the axiom set
- Repeat until no inference rule applies.
 - The steps may never terminate, in which case the set generated will be infinite.
- Post systems are non-deterministic (why?)

Example: a(b+c)*d

• • •

- Axioms = {ad}
- Inference rules
 - 1. aTd -> abTd
 - 2. aTd -> acTd

{ad}
{ad,acd}
{ad,acd,abd}
{ad,acd,abd,abcd}

Other examples

- See the text for
 - Balanced parentheses
 - Palindromes

Post Computable functions

- Suppose we have a function f: with type A* -> A*
- We say f is "post computable", if there exists a post system that computes the pairs

 {(x,f(x)} | x in A*}
- We encode tuples (x,f(x)) as the strings
 - X ++ "#" ++ f(x)
 - Where ++ is string concatenation
- The set of post computable functions are equivalent to the functions computable by a Turing Machine.