Markov Algorithms



Other Notions of Computability

e Many other notions of computability have been
proposed, e.g.
— (Type 0 a.k.a. Unrestricted) Grammars
— Partial Recursive Functions
— Lambda calculus
— Markov Algorithms
— Post Algorithms
— Post Canonical Systems,

e o All have been shown equivalent to Turing
machines by simulation proofs



Markov Algorithms

A Markov Algorithm over an alphabet Ais a
finite ordered sequence of productions x->y,
where x, y € A*. Some productions may be
“Halt” productions. e.g.

abc—>b
ba = x (halt)

Execution proceeds as follows:



Let the input string be w

The productions are scanned in sequence, looking for
a production x = y where x is a substring of w

The left-most x in w is replaced by y

If the production is a halt production, we halt

If no matching production is found, the process halts

If a replacement was made, we repeat from step 2.



 Note that a production A - a inserts a at the
start of the string.

 What does this Markov algorithm do?
aba—> b

aabaaa
ba 9 b abaa
b—>a ba



Example — Binary to Unary

1. II‘OII _> IIO‘ ‘II

||1|| -S> "O‘" "0‘01"

3. "Q".->"" "00
llOO

llOO
InPUt ”101” llOOO

e Example from wikipedia " OO
http://en.wikipedia.org/wiki/Markov_algorithm
" O

0

1"
O n




Other Notions of Computability

e Many other notions of computability have been
proposed, e.g.
— (Type 0 a.k.a. Unrestricted) Grammars
— Partial Recursive Functions
— Lambda calculus
— Markov Algorithms
— Post Algorithms
— Post Canonical Systemes,

e o All have been shown equivalent to Turing
machines by simulation proofs



Grammars

We can extend the notion of context-free
grammars to a more general mechanism

An (unrestricted) grammar G = (V,Z,R,S) is just like
a CFG except that rules in R can take the more
general form a—>B where o, are arbitrary strings
of terminals and variables. a must contain at
east one variable (or nontermial).

f a—>B then uav = uPv (“yields”) in one step

Define =* (“derives”) as reflexive transitive
closure of =.




Example - Counting

e Grammar generating {w € {a,b,c}*| w has equal
numbers of a’s, b’s, and c’s }

e G=({S,AB,C}{ab,c}R,S) whereR is

S—>A

5 > ABCS s
AB > BAAC—-> CABC—>CB

BA 2> ABCA > ACCB - BC
A—>aB->bC—>c



Example: {a?"", n > 0}

e Here’s a set of grammar rules . ,
Try generating 23 a’s

1. S—>a S

2. S—> ACaB ACaB

3. Ca—> aaC AaaCB

4. CB - DB AaaDB

5. CB—>E AaDaB

6. aD > Da ADaaB

7. AD >AC ACaaB

8. aE > Ea oot

9. AE—> A

AaaaaDB



(Unrestricted) Grammars
and Turing machines have
equivalent power

 For any grammar G we can find a TM M such
that L(M) = L(G).

e Forany TM M, we can find a grammar G such
that L(G) = L(M).



Other Notions of Computability

e Many other notions of computability have been
proposed, e.g.
— (Type 0 a.k.a. Unrestricted) Grammars
— Partial Recursive Functions
— Lambda calculus
— Markov Algorithms
— Post Algorithms
— Post Canonical Systemes,

e o All have been shown equivalent to Turing
machines by simulation proofs



Computation using Numerical Functions

 We’re used to thinking about computation as
something we do with numbers (e.g. on the
naturals)

 What kinds of functions from numbers to
numbers can we actually compute?

e To study this, we make a very careful selection
of building blocks



Primitive Recursive Functions

 The primitive recursive functions from N x N x ...
X N - N are those built from these primitives:

— zero(x) =0
— succ(x) = x+1
—1tk,j (x1,x2,...,xk) =xjfor0<j<k

e using these mechanismes:
— Function composition, and
— Primitive recursion



Function Composition

e Define a new function f in terms of functions h
and g1, g2, ..., gm as follows:

f(x1,...xn) = h(g1(x1,...,xn),...em(x1,...,xn))

Example: f(x) = x + 3 can be expressed using two
compositions as f (x) = succ(succ(succ(x)))



Primitive Recursion

* Primitive recursion defines a new function f in
terms of functions h and g as follows:

f(x1, ..., xk, 0) = h(x1,...,xk)
f(x1, ..., xk, succ(n)) = g(x1,...,xk, n, f(x1,...,xk,n))

Many ordinary functions can be defined using
primitive recursion, e.g.
add(x,0) = m1,1(x)
add(x, succ(y)) = succ(mr3,3(x, y, add(x,y)))



More P.R. Functions

e For simplicity, we omit projection functions and write O for zero( )
and 1 for succ(0)

» add(x,0) = x
add(x,succ(y)) = succ(add(x,y))
» mult(x,0) =0
mult(x,succ(y)) = add(x,mult(x,y))
» factorial(0) =1
factorial(succ(n)) = mult(succ(n),factorial(n))
» exp(n,0) =1
exp(n, succ(n)) = mult(n,exp(n,m))
» pred(0) =0
pred(succ(n)) = n

e Essentially all practically useful arithmetic functions are primitive
recursive, but...



Ackermann’s Function is not
Primitive Recursive

A famous example of a function that is clearly
well-defined but not primitive recursive

A(m, nN)=
iIT mO then n+1
else 1T n=0 then A(n-1, 1)
else A(m-1, A(m,n-1))



This function grows extremely fast!

Values of A(m, n)

0 1 2 3 4 n
1 2 3 4 5 n+1
2 9 4 B 6 n+2=2+(n+3)-3
3 5 7 9 11 2n+3=2-(n+3)—3
5 13 29 61 125 pn+3) _3
2

13 65533 265536 _ g 5209536 o ya a4 3)) 27 -3

- 2 — J|AS A% S~

n -+ 93 twos

2" :
65533 2, —o A4, A5, 1)) A4, A5, 2)) A4, A5, 3) A4, A5, n-1))
65536 twos

A5, 1)|AS, AB, 0)) AS, A6, 1)) A5, A6, 2)) A5, A6, 3)) A5, A6, n-1))



A Is not primitive recursive

Ackermann’s function grows faster than any
primitive recursive function, that is:

for any primitive recursive function f, there is an n
such that

A(n, x) > f x

So A can’t be primitive recursive



Partial Recursive Functions

A belongs to class of partial recursive functions,
a superset of the primitive recursive functions.

e Can be built from primitive recursive operators &
new minimization operator
— Let g be a (k+1)-argument function.

— Define f(x1,...,xk) as the smallest m such that
g(x1,...,.xk,m) =0 (if such an m exists)

— Otherwise, f(x1,...,xn) is undefined
— We write f(x1,...,xk) = um.[g(x1,...,xk,m) = 0]
— Example: um.[mult(n,m) = 0] = zero(_)



Hierarchy of Numeric Functions

All natural number

/ functions

~__— Partial recursive
functions

Partial recursive
functions that are
total

"~ Primitive recursive
functions




Turing-computable functions

 To formalize the connection between partial
recursive functions and Turing machines, we
need to describe how to use TM’s to compute
functions on N.

e Wesayafunctionf: NxNx...x N = N is Turing-
computable if there exists a TM that, when
started in configuration g,1"tU1"2LI...L11", halts
with just 1f(nLn2...nk) o the tape.

e Fact: f is Turing-computable iff it is partial
recursive.



	Markov Algorithms
	Other Notions of Computability
	Markov Algorithms
	Slide Number 4
	Slide Number 5
	Example – Binary to Unary
	Other Notions of Computability
	Grammars
	Example - Counting
	Example: {a2^n , n ≥ 0}
	(Unrestricted) Grammars�and Turing machines have�equivalent power
	Other Notions of Computability
	Computation using Numerical Functions
	Primitive Recursive Functions
	Function Composition
	Primitive Recursion
	More P.R. Functions
	Ackermannʼs Function is not�Primitive Recursive
	This function grows extremely fast!
	A is not primitive recursive
	Partial Recursive Functions
	Slide Number 22
	Turing-computable functions

