
Instantaneous Descriptions

ID's for TM's are strings of the form  α –q– β , 
where  α, β ∈ Γ* and q ∈ Q. 

The string  α represents the non-blank tape 
contents to the left of the head. 

The string  β represents the non-blank tape 
contents to the right of the head, including the  
currently scanned cell.

Adding or deleting a few blank symbols at the 
beginning of an ID results in an equivalent ID. 
Both represent the same instant in the execution 
of a TM.



Example  Instaneous Description

-p- 1 1 0 3

1 -q- 1 0 3

1 1 -r- 0 3

1 -s- 1 0 3



TM's transitions induce the relation |- between ID's. 
Let    ω =X1. . . Xi-1 –q– Xi . . . Xk be an ID. 

If  δ(q,Xi) is undefined, then there are no ID's  ω ' such 
that  ω |- ω '. 

If  δ(q,Xi)=(p,Y,R) then
ω |- ω ' holds for  ω ' = X1. . . Xi-1 Y –p– Xi+1. . . Xk

Similarly, if  δ(q,X_i)=(p,Y,L) 
then  ω |- ω’ holds for  ω’ =X1. . . –p– Xi-1YXi+1 . . . Xk



Note

If, in the first case, we have i=k, (that is we 
are at the end of the non-blank portion of 
the tape to the right) then we need to use 
the equivalent representation 

ω = X1 . . . Xk-1 –q– Xk B 

for our formula to make sense. Similarly, we 
add a B to the beginning of  ω whenever 
necessary.



Example

Here is the sequence of ID's of our example 
machine,showing its execution with the given 
input 0101:

–p– 0101 |- 0 –q– 101 |-01 –r– 01 |- 0 –s– 101

The machine halts, since there are no moves from 
the state s.  When the input is 0111, the machine 
goes forever, as follows:

-P- 0111 |- 0 –q- 111 |- 01 –r– 11 |- 011 –t– 1 |-
0111 –t– |- 0111B –t– |- 0111BB –t– |- …



The Language of a TM

We define the language of the TM M to be 
the set L(M) of all strings w ∈ Σ*

such that:     Q0 w |-* α –p– β
for some p ∈ F and any  α, β

Languages accepted by TM's are call 
recursively enumerable  (RE). 

Example. For our example machine, we 
have L(M)= (0+1)(0+1)0(0+1)*
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Example  Instantaneous Description 2

Recognize    anbm

"aabbb"
-0- a a b b b
^ a -0- a b b b
^ a a -0- b b b
^ a a b -1- b b
^ a a b b -1- b
^ a a b b b -1-
^ a a b b b -H- ^

"aabc"
-0- a a b c
^ a -0- a b c
^ a a -0- b c
Stuck  at   ^ a a b -1- c
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Example  Instantaneous Description 3

Recognize    anbncn “aabbc”
-0- a a b b c c
^ X -1- a b b c c
^ X a -1- b b c c
^ X a Y -2- b c c
^ X a Y b -2- c c
^ X a Y -3- b Z c
^ X a -3- Y b Z c
^ X -3- a Y b Z c
^ -3- X a Y b Z c
^ X -0- a Y b Z c
^ X X -1- Y b Z c
^ X X Y -1- b Z c
^ X X Y Y -2- Z c
^ X X Y Y Z -2- c
^ X X Y Y -3- Z Z
^ X X Y -3- Y Z Z
^ X X -3- Y Y Z Z
^ X -3- X Y Y Z Z
^ X X -0- Y Y Z Z
^ X X Y -0- Y Z Z
^ X X Y Y -0- Z Z
^ X X Y Y Z -4- Z
^ X X Y Y Z Z -4-
^ X X Y Y Z Z -H- ^
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Example  Instantaneous Description 3

Add 1 to a binary number "101011"
-0- 1 0 1 0 1 1
^ 1 -0- 0 1 0 1 1
^ 1 0 -0- 1 0 1 1
^ 1 0 1 -0- 0 1 1
^ 1 0 1 0 -0- 1 1
^ 1 0 1 0 1 -0- 1
^ 1 0 1 0 1 1 -0-
^ 1 0 1 0 1 -1- 1 ^
^ 1 0 1 0 -1- 1 0 ^
^ 1 0 1 -1- 0 0 0 ^
^ 1 0 -2- 1 1 0 0 ^
^ 1 -2- 0 1 1 0 0 ^
^ -2- 1 0 1 1 0 0 ^
-2- ^ 1 0 1 1 0 0 ^
^ ^ -H- 1 0 1 1 0 0 ^



Nondeterministic Turing Machines (NTM)

The definition of a NTM is the same as the definition of a TM, except 
that the transition function has the type  δ : Q × Γ → P(Q × Γ ×
{L,R})

At each move, an NTM has a finite set of choices.

The execution of an NTM is naturally represented by a tree whose non-
root nodes are all future ID's (instantaneous descriptions).

q0w

ID-1 ID-2

ID-3

ID-6 ID-7

ID-4 ID-5

ID-9ID-8



IDs and ND-Turing machines

In a nondeterministic Turing machine an 
instantaneous description can lead to a 
set of successor Ids
id  |- { id1, id2 }  

q0w

ID-1 ID-2

ID-3

ID-6 ID-7

ID-4 ID-5

ID-9ID-8



ND acceptance

In a ND-Turing machine, if an ID has an 
empty set of successor IDs, and is in final 
state, the ND-Turing machine accepts.

To run a ND-Turing machine we must visit 
all the possible paths ina “fair” manner

q0w

ID-1 ID-2

ID-3

ID-6 ID-7

ID-4 ID-5

ID-9ID-8



Example

Recall {w | w contains even number of 0s, or is a string of length 2 with exactly two 1’s}

-A- 1 1

^ 1 -D- 1  |  ^ 1 -B- 1

^ 1 1 -E- |  ^ 1 -D- 1

^ 1 1 -D- |  ^ 1 1 -E-

^ 1 1 -E- ^|  ^ 1 1 -D-

^ 1 1 -D- ^|  ^ 1 1 -E- ^

Accepted

^ 1 1 -E- ^



Negative example
-A- 1 1 0 1

^ 1 -D- 1 0 1 |  ^ 1 -B- 1 0 1

^ 1 1 -E- 0 1 |  ^ 1 -D- 1 0 1

^ 1 1 -D- 0 1 |  ^ 1 1 -E- 0 1

^ 1 1 -F- 0 1 |  ^ 1 1 -D- 0 1

^ 1 1 0 -C- 1 |  ^ 1 1 -F- 0 1

^ 1 1 0 -C- 1

^ 1 1 0 1 -C-

Rejected, no more possibilities



Acceptance by Halting

Here is another way of defining a language 
associated with a TM M.

We denote it H(M), and it consists of strings  
that cause the TM to halt. Precisely, a string 
w ∈ Σ* belongs to H(M) 

iff  q0 w |-* α p X β
where  δ(p,X) is undefined.  

Example. For our example machine, we have 
H(M)= ε + 0 + 1 + (0+1)(0+1) + (0+1)(0+1)0(0+1)*



Equivalence of 
Acceptance by Final State and Halting

How would we prove such an equivalence?

1. Construct a TM that accepts by Halting 
from an ordinary one.

2. Construct an ordianry TM from one that 
accepts by halting.



Power of Turing Machines (1)

Recall the Church Thesis: Every problem that has 
an algorithmic solution can be solved by a Turing 
Machine !

How do we become convinced that it is reasonable 
to believe this thesis? 

First, we can develop some programming 
techniques for TM's, allowing us to write 
machines for more and more complicated 
problems. Structuring states and tape symbols is 
particularly useful. Then, there is a possibility to 
use one TM as a subroutine for another. After 
having written enough TM's, we may get a 
feeling that everything that we can program in a 
convenient programming language could be done 
with TM. 



Power of Turing Machines (2)

Second, we can consider some 
generalizations of the concept of TM 
(multitape TM's, non-deterministic TM's, ...) 
and prove that they are essentially just as 
powerful as the plain TM's. 

Finally, we can prove that all proposed 
formalizations of the concept of 
computable, of which TM's is only one, are 
equivalent. (We won't be doing  this, of course.)



TM can encode stateful storage

Some states of a TM can be structured: one 
component is the ``state proper'', the 
others hold useful data.

Example. We have a TM M=(Q, Σ, Γ, 
δ,q_0,B,F) and suppose we want to 
modify it so that, when in state r, it swaps 
the contents of the two immediate cells 
(the scanned one and the next one to the 
right), and then go to the state s.



Construction

To do this, we pick two unused symbols p,q and 
add to Q the states [q,X] and [p,X], for each X ∈
Γ. We also add the transitions

δ(r,X)       =  ([q,X],X,R)
δ([q,X],Y) =  ([p,Y],X,L)
δ([p,Y],X) =  (s,Y,R)

for all X,Y ∈ Γ . 

Check that we've achieved the desired effect:
α rXY β |- α X -[q,X]- Y β |- α −[p,Y]- XX β |-

α YX β



Example

A TM for the language of palindromes can 
use states of the form [q,a] (a ∈ Σ ). 

Remembering the first symbol of the string, 
it deletes it (puts B in its place), then 
moves to the end of the input. 

Then it matches the last symbol against the 
stored first symbol and, if the match 
succeeds, it deletes the last symbol, and 
goes back to the first non-blank symbol, 
and repeats.



Multiple Tracks

If you'd like the tape cells to contain not one, but 
three symbols (perhaps from different alphabets  
Γ1, Γ2, Γ3), then you just use  the tape alphabet   
Γ = Γ1 × Γ2 × Γ3. 

Effectively, the tape now has 3 “tracks”, which we 
can manipulate independently.

Note that the blank symbol of  Γ is (B1,B2,B3), 
where Bi is  the blank of  Γi. 

A common application of this idea is to use one 
track for “real” data, and the second track for 
one or more “markers” that conveniently mark  
some positions in the strings. 



Example

Suppose we want a TM for the language of 
palindromes over {0,1} that contain more 0's 
than 1's. 

The natural idea is to first check if the input is a 
palindrome, then count the 0's and 1's. 

The palindrome TM of the previous example cannot 
be used because it progressively deletes the 
input. 

But we can modify it by using the new tape 
alphabet  Γ '= Γ × {*,B}. At the beginning, we 
put the mark * on the first and the last symbol of 
the input, then move these two marks one cell 
closer, as we check that the ``real'' contents of 
the two cells are equal. 



Multi-Tape Turing Machines

These generalized TM's can use a finite number of 
independent tapes. 

0 1 1 0 0 0 1 

a a a b c c c c c 

0 1 1 1 1 1 1 1



Transitions are determined by the current 
state and the contents of all scanned cells 
(one on each tape). 

On a transition, the TM moves to the next 
state, scanned symbols get overwritten, 
and each head gets a direction to move  
(L, R, or S (stationary) ). 

Initially, the first tape holds the input. The 
other tapes are blank.



Simulating Multitape TM's

To simulate k tapes, use one tape with 2k 
tracks. One track holds the contents of 
each tape, another marks the position of 
the corresponding head.

0 1 1 0 0 0 1 

a a a b c c c c c 

0 1 1 1 1 1 1 1

↓

↓

↓



One move of the multitape TM M is simulated by a 
sequence of moves of the one tape TM M_1:

1. M1 moves left, then right, visiting all the ↓'s 
to see what each   tape head of M is 
scanning.

2. Based on the scanned symbols of M and the 
current state  of M (that  M1 keeps 
remembering), M1 knows the next move of  
M. 

3. With the information about the next move of 
M available, M1 visits each ↓ again, 
changing the corresponding symbol on one 
of the tracks, and moving that ↓
appropriately.



Simulating ND-TM's

An ND-TM N is first simulated by a multitape TM M; 
we know that M can be then converted to a one-
tape TM.

On one of its tapes, M maintains a queue of ID's of 
N that can arise from a starting ID q0w. These 
ID's are separated by a special marker  ⊗ .

Execution of M goes in big steps.  If ω is the ID at 
the front end of the queue, then M computes all 
possible ID's  ω1, ... ,ωk that are immediate 
successors of ω in the execution of N. 

A big step of M consists of dequeuing ω and 
enqueuing ω1, ... , ωk. 



Here is how the queue changes in the first 
few big steps (|-|-) when the execution of 
N is as in the picture.

q0w  |-|- ID-1 ⊗ ID-2
|-|- ID-2 ⊗ ID-3
|-|- ID-3 ⊗ ID-4 ⊗ ID-5 
|-|- ID-4 ⊗ ID-5 ⊗ ID-6 ⊗ ID-7
|-|- ID-5 ⊗ ID-6 ⊗ ID-7 ⊗ ID-8
|-|- ID-6 ⊗ ID-7 ⊗ ID-8 ⊗ ID-9

q0
w

ID-1 ID-2

ID-3

ID-6 ID-7

ID-4 ID-5

ID-9ID-8



Note that if the N-tree with the root q0w contains 
an accepting ID  ω (one in which the occurring 
N-state is final), then  ω will eventually come to 
the front of the M-queue, at which point M can 
recognize it as N-accepting, and accept itself.

Other tape(s) of M are used for  the necessary 
“localized” simulations of M that each big step 
requires. For example, M can use a “scratch 
tape” to copy the first ID  ω from the queue, 
and compute three  ω's successors  ω1, … ,ωk. 

See the textbook for more details.
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