
Last Lecture

We began to show CFL = PDA
Theorem 1. Every context-free language is accepted by some 

PDA.
Theorem 2. For every PDA M, the language L(M) is context-

free.

We showed how a PDA could be constructed from 
a CFL. Given a CFG  G=(V,T,P,S), we define a 
PDA M=({q},T, T ∪ V, δ,q,S), with δ given by 

– If A ∈ V, then δ(q,Λ,A) = { (q,α)  |  A → α is in P}
– If a ∈ T, then δ(q,a,a) = { (q,Λ) }

1. The stack symbols of the new PDA contain all the terminal 
and non-terminals of the CFG

2.There is only 1 state in the new PDA
3.Add transitions on Λ, one for each production
4.Add transitions on a ∈ T, one for each terminal.



Transitions simulate left-most derivation 

S ⇒ SS ⇒ (S)S ⇒ ((S))S ⇒ (())S ⇒ (())(S) ⇒ (())()

(q, "(())()" ,S     )  |- [1]
(q, "(())()" ,SS    )  |- [2]
(q, "(())()" ,(S)S  )  |- [4]
(q, "())()"  ,S)S   )  |- [4] 
(q, "())()"  ,(S))S )  |- [4]
(q, "))()"   ,S))S  )  |- [3]
(q, "))()"   ,))S   )  |- [5]
(q, ")()"    ,)S    )  |- [5]
(q, "()"     ,S     )  |- [2]
(q, "()"     ,(S)   )  |- [4]
(q, ")"      ,S)    )  |- [3]
(q, ")"      ,)     )  |- [5]
(q, ε ,ε )

1. δ(q, Λ,S)  = (q, SS)        S → SS
2. δ(q, Λ,S)  = (q, (S) )      S → (S) 
3. δ(q, Λ,S)  = (q, Λ )         S → Λ
4. δ(q, (, ( ) = (q,Λ)
5. δ(q, ), ) ) = (q,Λ)

Note there is an entry in δ
for each terminal and 
non-terminal symbol. The 
stack operations mimic a 
top down parse, replacing 
Non-terminals with the 
rhs of a production.



Proof Outline

To prove that every string of L(G) is accepted by 
the PDA M, prove the following more general 
fact:

If   S ⇒left-most
* α then  (q,uv,S) |-* (q,v,β)

where  α = uβ is the “leftmost factorization” of α
(u is the longest prefix of α that belongs to T*, 
i.e. all terminals).
For example: if α = abcWdXa then u = abc, and β = WdXa, 
since the next symbol after abc is W∈V (a non-terminal or Λ)
S ⇒lm

* abcW…   then (q, abcV,S) |-* (q,V, W…)

The proof is by induction on the length of the 
derivation of α.



We also need to prove that every string 
accepted by M belongs to L(G). Again, to 
make induction work, we need to prove a 
slightly more general fact:

If (q,w,A) |-* (q, Λ, Λ), then   A ⇒∗ w
For all Stacks A, letting A = Start we have our proof.

This time we induct on the length of 
execution of M that leads from the ID 
(q,w,A) to (q, Λ , Λ).



A Grammar from a PDA

Assume the M = (Q,Σ,Γ,δ,q0,Z0) is given, and that 
it accepts by empty stack.  Consider execution of 
M on an accepted input string. 

If at some point of the execution of M the stack is 
Zζ (Z is on top, ζ is the rest of stack)

In terms of instantaneous descriptions
(statei, input, Zζ) |− . . .

Then we know that eventually the stack will be ζ. 
Why? Because we assume the input is accepted, 

and M accepts by empty stack, so eventually Z 
must be removed from the stack



(statei, αX,  Zζ) |−∗ (statej, X,  ζ) 

The sequence of moves between these two 
instants is the “net popping” of Z from the 
stack. 

During this sequence of moves, the stack 
may grow and shrink several times, some 
input will be consumed (the α), and M will 
pass through a sequence of states, from 
statei to statej.



Net Popping

Net popping is fundamental for the construction of a CFG G 
equivalent to M. 

We will have a variable (Non-terminal) [qZp] in the CFG G for 
every triple in (q,Z,p) ∈ Q×Γ×Q from the PDA. Recall 

1. Q is the set of states
2. Γ Is the set of stack symbols

We want the rhs of a production whose lhs is [qZp] to 
generate precisely those strings w ∈ Σ* such that M can 
move from q to p while reading the input w and doing the 
net popping of Z.     A production like     [qZp] -> ?

This can be also expressed as (q,w,Z) |-* (p, Λ , Λ)

Productions of G correspond to transitions of M. 



If (p,ζ) ∈ δ(q,a,Z), then there is one or more 
corresponding productions, depending on 
complexity of ζ.

1. If  ζ = Λ, we have [qZp] → a 
2. If ζ = Y, we have [qZr] → a[pYr]  for every 

state r
3. If ζ = YY’ we have [qZs] → a[pYr][rY's], for 

every pair of states r and s.
4. You can guess the  rule for longer ζ. 



Example

Q = {0,1}
S = {a,b}
Γ = {X}
δ(0,a,X) = { (0,X) }
δ (0,Λ,X) = { (1,Λ) }
δ (1,b,X) = { (1,Λ) }
Q0 = 0

Z0 = X
F = {},  accepts by empty stack

Non-terminals
(q,Z,p) ∈ Q×Γ×Q
(0,'X',0)
(0,'X',1)
(1,'X',0)
(1,'X',1)

Productions, At least one 
from each element in delta 
(p,z) ∈ δ(q,a,Z)

(0,a,X,0,X)
(1,b,X,1,Λ)
(0,Λ,X,1,Λ)]

0X0 -> a  0X0
0X1 -> a 0X1
1X1 -> b
0X1 -> Λ



CFL Pumping Lemma

A CFL pump consists of two non-
overlapping substrings that can be 
pumped simultaneously while staying in 
the language. 

Precisely, two substrings u and v constitute 
a CFL pump for a string w of L when
1. uv ≠ Λ (which means that at least one of u or v is not empty)

2. And we can write  w=xuyvz,  so that for 
every i ≥ 0

3. xuiyviz ∈ L



Pumping Lemma

Let L be a CFL. Then there exists a number 
n (depending on L) such that every string 
w in L of length greater than n contains a 
CFL pump. 

Moreover, there exists a CFL pump such 
that (with the notation as above), |uyv|≤
n.

For example, take L= {0i1i | i ≥ 0 }: there 
are no (RE) pumps in any of its strings, 
but there are plenty of CFL pumps.



The pumping Lemma Game

We want to prove L is not context-free. For a proof, 
it suffices to give a winning strategy for this 
game.

1. The demon first plays n. 
2. We respond with w ∈ L such that |w| ≥ n.
3. The demon factors w into five substrings, 

w=xuyvz, with the proviso that uv ≠ Λ and 
|uyv| ≤ n

4. Finally, we play an integer i ≥ 0, and we win if 
xuiyviz ∉ L.



Example 1

We prove that L= {0i1i2i | i ≥ 0} is not context-free.

In response to the demon's n, we play w=0n1n2n. 

The middle segment uyv of the demon's factorization of w = 
xuyvz, cannot have an occurrence of both 0 and 2           
( because we can assume |uyv| ≤ n ). 

Suppose  2 does not occur in uyv (the other case is similar). 
1. We play i = 0. 
2. Then the total number of 0's and 1's in w0=xyz will be 

smaller than 2n, 
3. while the number of 2's in w0 will be n. 
4. Thus, w0 ∉ L. 



Example 2

Let L be the set of all strings over {0,1} 
whose length is a perfect square. 

1. The demon plays n 
2. We respond with w = 0n^2

3. The demon plays a factorization 0n^2 = xuyvz 
with  1 ≤ |uyv| ≤ n. 

4. We play i=2. 
5. The length of the resulting string w2 = xu2yv2z 

is between n2+1 and n2+n. 
6. In that interval, there are no perfect squares, 

so w2 ∉ L.



Proof of the pumping lemma

Strategy in several steps

1. Define fanout
2. Define height yield
3. Prove a lemma about height yield
4. Apply the lemma to prove pumping 

lemma



Fanout

Let fanout(G) denote the maximal length of 
the rhs of any production in the 
grammar G. 

E.g. For the Grammar
S → S S
S → ( S )
S → ε

The fanout is 3



Height Yield

The proof of Pumping Lemma depends on 
this simple fact about parse trees. 

The height of a tree is the maximal length of 
any path from the root to any leaf. 

Lemma. If a parse tree of G has height h, 
than its yield has length at most fanout(G)h

Proof. Induction on h
qed



The actual Proof

The constant n for the grammar G is fanout(G)|V|

where V is the set of variables of G. 
Suppose w ∈ L(G) and  |w| ≥ n. 
Take a parse tree of w with the smallest possible 

number of nodes. 
By the Height-Yield  Lemma, any parse tree of w 

must have height  ≥ |V|. 
Therefore, there must be two occurrences of the 

same variable  on a path from root to a leaf. 
Consider the last two occurrences of the same 

variable (say A) on that path. 
They determine a factorization of the yield 

w=xuyvz as in the picture on the next slide



Diagram

We have 

S ⇒∗ xAz
A ⇒∗ uAv
A ⇒∗ y

so clearly S ⇒∗ xuiyviz for 
any i ≥ 0. 

Start

A

A

x     u     y   v  z



We also need to check that uv ≠ Λ. Indeed, if uv= 
Λ, we can get a smaller parse tree for the same 
w by ignoring the productions “between the two 
As”.  But we have chosen the smallest possible 
parse tree for w! Which leads to a Contradiction.

Finally, we need to check that |uyv| ≤ n. This 
follows from the Height-Yield Lemma because 
the nodes on our chosen path from the first 
depicted occurrence of A, onward,  are labeled 
with necessarily distinct variables. 

qed
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