Last Lecture

We began to show CFL = PDA

Theorem 1. Every context-free language is accepted by some PDA.

Theorem 2. For every PDA M, the language L(M) is contextfree.

- We showed how a PDA could be constructed from a CFL. Given a CFG G=(V,T,P,S), we define a PDA $M=(\{q\},T,T\cup V, \delta,q,S)$, with δ given by
 - If $A \in V$, then $\delta(q, \Lambda, A) = \{ (q, \alpha) \mid A \rightarrow \alpha \text{ is in } P \}$
 - If $a \in T$, then $\delta(q, a, a) = \{ (q, \Lambda) \}$
 - 1. The stack symbols of the new PDA contain all the terminal and non-terminals of the CFG
 - 2. There is only 1 state in the new PDA
 - 3. Add transitions on Λ , one for each production
 - 4. Add transitions on $a \in T$, one for each terminal.

Transitions simulate left-most derivation

```
S \Rightarrow SS \Rightarrow (S)S \Rightarrow ((S))S \Rightarrow (())S \Rightarrow (())(S) \Rightarrow (())()
```


Proof Outline

To prove that every string of L(G) is accepted by the PDA M, prove the following more general fact:

If
$$S \Rightarrow_{left-most}^{*} \alpha$$
 then $(q,uv,S) \mid -* (q,v,\beta)$

where $\alpha = u\beta$ is the "leftmost factorization" of α (u is the longest prefix of α that belongs to T^{*}, i.e. all terminals).

For example: if α = abcWdXa then u = abc, and β = WdXa, since the next symbol after abc is W \in V (a non-terminal or Λ) S \Rightarrow_{Im}^* abcW... then (q, abcV,S) |-* (q,V, W...)

The proof is by induction on the length of the derivation of α .

We also need to prove that every string accepted by M belongs to L(G). Again, to make induction work, we need to prove a slightly more general fact:

If $(q, W, A) \mid -^* (q, \Lambda, \Lambda)$, then $A \Longrightarrow^* W$ For all Stacks A, letting A = Start we have our proof.

This time we induct on the length of execution of M that leads from the ID (q,w,A) to (q, Λ, Λ) .

A Grammar from a PDA

Assume the $M = (Q, \Sigma, \Gamma, \delta, q_0, Z_0)$ is given, and that it accepts by empty stack. Consider execution of M on an accepted input string.

If at some point of the execution of M the stack is $Z\zeta$ (Z is on top, ζ is the rest of stack) In terms of instantaneous descriptions (state_i, input, $Z\zeta$) |-...

Then we know that eventually the stack will be ζ . Why? Because we assume the input is accepted, and M accepts by empty stack, so eventually Z must be removed from the stack (state_i, αX , $Z\zeta$) |-* (state_j, X, ζ)

- The sequence of moves between these two instants is the "net popping" of Z from the stack.
- During this sequence of moves, the stack may grow and shrink several times, some input will be consumed (the α), and M will pass through a sequence of states, from state_i to state_j.

Net Popping

Net popping is fundamental for the construction of a CFG G equivalent to M.

We will have a variable (Non-terminal) [qZp] in the CFG G for every triple in (q,Z,p) $\in Q \times \Gamma \times Q$ from the PDA. Recall

- 1. Q is the set of states
- 2. Γ Is the set of stack symbols

We want the rhs of a production whose lhs is [qZp] to generate precisely those strings $w \in \Sigma^*$ such that M can move from q to p while reading the input w and doing the net popping of Z. A production like [qZp] ->?

This can be also expressed as $(q,w,Z) \mid -* (p, \Lambda, \Lambda)$

Productions of G correspond to transitions of M.

- If $(p,\zeta) \in \delta(q,a,Z)$, then there is one or more corresponding productions, depending on complexity of ζ .
 - 1. If $\zeta = \Lambda$, we have $[qZp] \rightarrow a$
 - 2. If $\zeta = Y$, we have $[qZr] \rightarrow a[pYr]$ for every state r
 - 3. If $\zeta = YY'$ we have $[qZs] \rightarrow a[pYr][rY's]$, for every pair of states r and s.
 - 4. You can guess the rule for longer ζ .

Example

 $Q = \{0,1\} \\ S = \{a,b\} \\ \Gamma = \{X\} \\ \delta(0,a,X) = \{ (0,X) \} \\ \delta(0,\Lambda,X) = \{ (1,\Lambda) \} \\ \delta(1,b,X) = \{ (1,\Lambda) \} \\ O_{0 = 0} \\ Z_{0} = X \\ F = \{\}, \text{ accepts by empty stack} \end{cases}$

Non-terminals $(q, Z, p) \in Q \times \Gamma \times Q$ (0, 'X', 0) (0, 'X', 1) (1, 'X', 0)(1, 'X', 1)

Productions, At least one from each element in delta $(p,z) \in \delta(q,a,Z)$

(0,a,X,0,X) (1,b,X,1,Λ) (0,Λ,X,1,Λ)] 0X0 -> a 0X0 0X1 -> a 0X1 1X1 -> b 0X1 -> Λ

CFL Pumping Lemma

- A *CFL pump* consists of two nonoverlapping substrings that can be pumped simultaneously while staying in the language.
- Precisely, two substrings u and v constitute a CFL pump for a string w of L when
 - 1. UV $\neq \Lambda$ (which means that at least one of u or v is not empty)
 - 2. And we can write w=xuyvz, so that for every $i \ge 0$
 - 3. $xu^iyv^iz \in L$

Pumping Lemma

- Let L be a CFL. Then there exists a number n (depending on L) such that every string w in L of length greater than n contains a CFL pump.
- Moreover, there exists a CFL pump such that (with the notation as above), |uyv|≤ n.
- For example, take L= $\{0^{i}1^{i} | i \ge 0\}$: there are no (RE) pumps in any of its strings, but there are plenty of CFL pumps.

The pumping Lemma Game

- We want to prove L is not context-free. For a proof, it suffices to give a winning strategy for this game.
- 1. The demon first plays n.
- 2. We respond with $w \in L$ such that $|w| \ge n$.
- 3. The demon factors w into five substrings, w=xuyvz, with the proviso that $uv \neq \Lambda$ and $|uyv| \leq n$
- 4. Finally, we play an integer $i \geq 0$, and we win if $xu^iyv^iz \not\in L.$

Example 1

We prove that $L = \{0^i 1^i 2^i \mid i \ge 0\}$ is not context-free.

In response to the demon's n, we play $w=0^{n}1^{n}2^{n}$.

The middle segment upv of the demon's factorization of w = xuyvz, cannot have an occurrence of both 0 and 2 (because we can assume $|UyV| \le n$).

Suppose 2 does not occur in uyv (the other case is similar).

- 1. We play i = 0.
- 2. Then the total number of 0's and 1's in $w_0 = xyz$ will be smaller than 2n,
- 3. while the number of 2's in w_0 will be n.
- 4. Thus, $w_0 \notin L$.

Example 2

Let L be the set of all strings over {0,1} whose length is a perfect square.

- 1. The demon plays n
- 2. We respond with $w = 0^{n^2}$
- 3. The demon plays a factorization $0^{n^2} = xuyvz$ with $1 \le |uyv| \le n$.
- 4. We play i=2.
- 5. The length of the resulting string $w_2 = xu^2yv^2z$ is between n^2+1 and n^2+n .
- 6. In that interval, there are no perfect squares, so $W_2 \notin L$.

Proof of the pumping lemma

Strategy in several steps

- 1. Define fanout
- 2. Define height yield
- 3. Prove a lemma about height yield
- 4. Apply the lemma to prove pumping lemma

Fanout

Let fanout(G) denote the maximal length of the rhs of any production in the grammar G.

E.g. For the Grammar $S \rightarrow S S$ $S \rightarrow (S)$ $S \rightarrow \varepsilon$

The fanout is 3

Height Yield

The proof of Pumping Lemma depends on this simple fact about parse trees.

The *height* of a tree is the maximal length of any path from the root to any leaf.

Lemma. If a parse tree of G has height h, than its yield has length at most fanout(G)^h

Proof. Induction on h qed

The actual Proof

The constant n for the grammar G is fanout(G)|V| where V is the set of variables of G.

Suppose $w \in L(G)$ and $|w| \ge n$.

- Take a parse tree of w with the smallest possible number of nodes.
- By the Height-Yield Lemma, any parse tree of w must have height $\geq |V|$.
- Therefore, there must be two occurrences of the same variable on a path from root to a leaf.
- Consider the last two occurrences of the same variable (say A) on that path.
- They determine a factorization of the yield w=xuyvz as in the picture on the next slide

 $S \Rightarrow^* xAz$ $A \Rightarrow^* uAv$ $A \Rightarrow^* y$

so clearly $S \Rightarrow^* xu^i yv^i z$ for any $i \ge 0$.

We also need to check that $uv \neq \Lambda$. Indeed, if $uv = \Lambda$, we can get a smaller parse tree for the same w by ignoring the productions "between the two As". But we have chosen the smallest possible parse tree for w! Which leads to a Contradiction.

Finally, we need to check that |uyv| ≤ n. This follows from the Height-Yield Lemma because the nodes on our chosen path from the first depicted occurrence of A, onward, are labeled with necessarily distinct variables.

qed