CS311 Computational Structures

Computational Complexity
So, it’s computable!

• But at what cost?
 ‣ Some things that are computable in principle are in practice *intractable* because of the high “cost”
 ‣ “Cost” can measured in time, or in space, or in other resources …

• Simple time measure of decision algorithm is *number of steps taken by a* (one-tape, deterministic) Turing Machine
Counting TM Steps

• \(L_{\text{ax}} = \{w \in \{a,b\}^* \mid \text{next to last symbol of } w \text{ is } a\}\)

• Machine always takes exactly \(n+3\) steps on input of length \(n\)
Time complexity class

• STEPS($t(n)$) is the class of all languages that are decidable by a (one tape deterministic) Turing machine in at most $t(n)$ steps.
 ▷ Given input of size n, machine must halt within $t(n)$ steps with definite answer accept or reject.

• So $L_{ax} \in$ STEPS($n+3$)
A smarter machine for L_{ax}

- Machine takes at most $n+1$ steps on input of length n

- So $L_{ax} \in STEPS(n+1)$
A machine for \(\{a^k b^k \mid k \geq 0\} \)

- Main loop matches a from start and b from end.
- e.g. \(0aabb \rightarrow 1abb \rightarrow a1bb \rightarrow ab2b \rightarrow abb2 \rightarrow ab3b \rightarrow a4b \rightarrow 4ab \rightarrow 4 \uparrow ab \rightarrow 0ab\)
Calculating machine time

• Main loop on $a^k b^k$ takes $4k+1$ steps and reduces k by 1
 ‣ e.g. for $k = 2$: $0aabb \rightarrow 1abb \rightarrow a1bb \rightarrow ab2b \rightarrow abb2 \rightarrow ab3b \rightarrow a4b \rightarrow 4ab \rightarrow 4a \rightarrow 0ab$

• So overall time for “yes” decision on $a^k b^k$ is
 ‣ $(4k+1) + (4(k-1)+1) + ... + (4+1) + 1$
 ‣ $= 4(k+(k-1)+...+1) + k + 1 = 4k(k+1)/2 + k+1$
 ‣ $= (2k+1) (k+1) = 2k^2 + 3k + 1$

• By inspection, reaching “no” can’t take longer than “yes”, so machine decides in at most $(1/2)n^2 + (3/2)n + 1$ steps
Problems vs. Algorithms

• So \(\{a^k b^k \mid k \geq 0\} \in \text{STEPS}((1/2)n^2 + (3/2)n + 1) \).
• Does this mean that deciding \(\{a^k b^k \mid k \geq 0\} \) always takes this much time?
• No! There are faster algorithms (machines) for deciding this language.
 ‣ e.g., can be done in time proportional to \(n \log n \)
Let’s approximate

• We’d like to discuss time for algorithms even if they are only described informally
 ‣ And even when we do have a precise TM, counting steps exactly is tedious!

• Also, we often care only about the asymptotic ("big O") behavior of an algorithm or problem.

• From now on, we’ll be loose about describing and counting steps
 ‣ e.g. \(\{a^k b^k \mid k \geq 0\} \in \text{TIME}(n^2) \)
The Meaning of Big Oh

The notation $f(n) = O(g(n))$ means that there are positive numbers c and m such that

$$|f(n)| \leq c|g(n)| \text{ for all } n \geq m.$$

The Meaning of Big Omega

The notation $f(n) = \Omega(g(n))$ means that there are positive numbers c and m such that

$$|f(n)| \geq c|g(n)| \text{ for all } n \geq m.$$
In other words...

- $O(g)$ is the set of functions whose asymptotic behavior is bounded above by that of g

- $\Omega(g)$ is the set of functions whose asymptotic behavior is bounded below by that of g

- Also, we define $\Theta(g)$ to be the set of functions with the same asymptotic behavior as g — i.e., both $O(g)$ and $\Omega(g)$
Comparative growth rates of some functions

\[f(x) = 2^x \]

\[f(x) = x^x \]

\[f(x) = x! \]

atoms in observable universe

seconds since Big Bang

\[f(x) = 3^x \]

\[f(x) = 2^x \]

\[f(x) = x^3 \]

\[f(x) = x^2 \]
Avoiding Exponential Time

• Algorithms requiring exponential time are too slow to be practical except for very small input sizes.

• Indeed, problems requiring more than polynomial time are often called intractable.

 ‣ Note: this is just a convenient term. A “tractable” problem that requires $O(n^{100})$ time is likely not practically solvable.
Another problem: PATH

• PATH = \{ \langle G, s, t \rangle \mid G \text{ is a directed graph that has a directed path from } s \text{ to } t \}\}

 ‣ We assume \langle G \rangle \text{ is encoded as an adjacency matrix of size } O(n^2). (Any other reasonable encoding will also work.)

• There’s an obvious brute force algorithm to decide this language: try each possible sequence of nodes in G of length up to n, and see if it forms a path in G

 ‣ We consider each possible path only once

 ‣ But there are still \(n! \) possible paths, so time of this algorithm is \(\Omega(2^n) \).
A faster PATH finder

- PATH = {⟨G,s,t⟩ | G is a directed graph that has a directed path from s to t }

- A faster algorithm operates like this:
 1. Place a mark on node s
 2. Repeat until no additional nodes are marked
 2.1. Scan all edges of G. If an edge (a,b) is found from a marked node a to an unmarked node b, mark b.
 3. If t is marked accept; otherwise reject.

- Time: step 2 repeats O(n) times; each step takes O(n^2) time, so overall time is O(n^3). PATH is tractable after all.
Finding a Hamiltonian path

• HAMPATH = \{⟨G,s,t⟩ | G is a directed graph with a path from s to t passing through each node exactly once\}

• The brute force algorithm for PATH works here too, so HAMPATH is in TIME(n!) (where n is number of nodes in graph).

• Nobody knows for sure whether there is a polynomial-time algorithm for HAMPATH.
What if we vary the model?

• When we’re talking about timing, our precise choice of TM model matters.
 ‣ Unlike for decidability results.

• Example: Given a two-tape TM, we can recognize \(\{a^n b^n \mid n \geq 0\} \) in \(O(n) \) time. How?

• Example: On a nondeterministic TM, the brute force algorithm for PATH runs in polynomial time. Why?
Time cost of simulation

• We can relate execution times on fancy TM’s to those on the standard TM.

• For every multitape TM that runs in time \(t(n) \), there is an equivalent single tape TM that runs in time \(O(t^2(n)) \).
 › IALC Thm. 8.10

• For every ND TM that decides in time \(t(n) \), there is an equivalent single tape TM that decides in time \(2^{O(t(n))} \).
 › Straightforward from simulation method
Summary

• Sometimes there’s an algorithm that is asymptotically faster than the “obvious” one.

• Sometimes there isn’t (and we may not know).

• The distinction between polynomial and exponential time algorithms matters

• The underlying computation model matters
The class P: Tractable Problems

• P is the class of languages that are decidable in polynomial time on a deterministic single-tape Turing machine. In other words,

• \(P = \bigcup_k \text{TIME}(n^k) \)

• where the time complexity class \(\text{TIME}(t(n)) \) is the collection of languages that are decidable by a deterministic single-tape TM in \(O(t(n)) \) steps
Tractable Problems

• Most of the computer programs in common use solve a problem in P.
 ‣ If it weren’t, the program would probably run too slowly to be useful!
 ‣ Exception: some problems can be solved for interesting special cases even if they aren’t tractable in general

• But sometimes finding a polynomial time algorithm is challenging
 ‣ And for a large class of problems, we don’t know for sure whether such a algorithm exists.
Verifying vs. Solving

• Often, it seems easier to **verify** an alleged solution to a problem than it is to **determine** from scratch whether there is a solution.
 ‣ Example: Consider the Hamiltonian Path problem; no polynomial time algorithm for this is known.
 ‣ But if we have a proposed solution (i.e., a path that visits each node once), it is simple to **verify** whether the path is correct in polynomial time. (How ?)

• The proposed solution is described by a **certificate**
 ‣ e.g., for Hamiltonian Path, the proposed path

• A **verifier** is a TM that takes a problem and a certificate and answers “OK” or “fake”
The Class NP

• The class NP contains all the decision problems that can be verified in Polynomial time.

Equivalently

• The class NP contains all the decision problems that can be solved in Polynomial time by a nondeterministic algorithm
 ‣ It may make arbitrary (nondeterministic) choices
 ‣ The number of steps must be bounded by some polynomial in \(n \), where \(n \) is the length of the input
 ‣ \(\text{NTIME}(t(n)) = \text{languages decidable in } O(t(n)) \text{ time by a NDTM} \)
 ‣ \(\text{NP} = \bigcup_k \text{NTIME}(n^k) \)
Equivalence of Two Definitions of NP

• Suppose that we have a deterministic verifier …

• then we build a non-deterministic solver that:
 ‣ non-deterministically generates all putative certificates (effectively in parallel)
 ‣ runs the deterministic verifier to check them (each in polynomial time)
 ‣ if there is a solution, we’ll find and approve its certificate
• Conversely:
 • Suppose we have a non-deterministic solver, e.g., a non-deterministic TM M
 • At each of its polynomially-many steps, it may branch at most a constant number of ways.
 • We can use the path of choices made as the certificate; valid certificates lead to accept states.
 • So: we can build a deterministic verifier that, given the certificate, simulates M on that path, and checks that it is an accept path.
 • This takes polynomially-many steps
• Anything in P is also in NP
 ‣ because any deterministic algorithm is also a non-deterministic algorithm

• Does P = NP?
 ‣ currently not known, but widely suspected P ≠ NP
Beyond NP

• Many interesting and natural problems are in NP
 ‣ Typically show membership in NP by exhibiting a polynomial-time verifier.

• But some (natural) problems are not...

• $\text{EXPTIME} = \bigcup_{k} \text{TIME}(2^{n^k})$ is believed to be larger than NP (and known to be larger than P)

• $2\text{-EXPTIME} = \bigcup_{k} \text{TIME}(2^{2^{n^k}})$ is larger than NP
What about Space?

• We can measure the space use of a TM as the maximum number of tape cells it scans on an input of length n.

• Define \(\text{SPACE}(f(n)) \) as the class of languages decided by a (deterministic) TM using \(O(f(n)) \) space.

• Define \(\text{NSPACE} \) similarly for non-deterministic TM.
NP ⊆ PSPACE

• By analogy with time classes, we define
 \[\text{PSPACE} = \bigcup_k \text{SPACE}(n^k) \quad \text{and} \quad \text{NPSPACE} = \bigcup_k \text{NSPACE}(n^k) \]

• Then NP ⊆ PSPACE.
 ‣ Clearly NP ⊆ NPSPACE, because a machine that takes \(t \) steps can access at most \(t \) tape squares.
 ‣ It turns out that NPSPACE = PSPACE
 ° Consequence of Savitch’s theorem (IALC 11.5)
 ‣ It also turns out that NPSPACE ⊆ EXPTIME

• But it is unknown whether NP \(\not\subseteq \) PSPACE or NSPACE \(\not\subseteq \) EXPTIME