
Church’s Thesis



Algorithms and Decidability

• Self-reference
1. Example. This sentence is false.

2. Example. There is a barber in a village, and he shaves 
precisely those men in the village who do not shave 
themselves. Does he shave himself?

3. Example. Programs as data 

• Self referencing systems are interesting because 
they can lead to paradoxes.



Mechanizing Mathematics

• Arithmetic and other big fragments of Mathematics can be 
represented as formal systems.  

• Whitehead and Russel's Principia Mathematica (1910--1913) 
is a grand example of an attempt at formalizing the whole of 
Mathematics from the logical scratch.

• Statements are represented by precise formulas; some 
formulas are taken as axioms; 

• Theorems are derived from axioms and previously proved 
theorems by precise rules of deduction.

• Example. (∃ n ≥ 3)(∃ x)(∃ y)(∃ z) xn + yn = zn



Completeness
• Some formal systems are complete: 

– all true formulas are theorems of the system. 

• Examples are propositional and predicate calculi.

• In 1936, Gödel proved the famous Incompleteness Theorem, 
• It says that the proposed formalization of Arithmetic (as well 

as any reasonable extension of it) is incomplete: 
– there are sentences that are true, but unprovable in the system. 

• Gödel managed to express theoremhood within the system 
and then construct a formula that (essentially) says I am not a 
theorem. 



Decision Problems

• Given a set S and a subset A of S, the corresponding decision 
problem is to find an algorithm that takes an arbitrary 
element x of S as input and returns True or False depending 
on whether x∈A or x∉A. 

• Example. Is a given number n prime?

• Example. Is a given CFG G ambiguous?



• More generally, 

• given a function f: X → Y, we may be interested in the 
existence of an algorithm that given an input x ∈ X produces 
as output f(x) ∈ Y. 

• Such problems can be reduced to decision problems. Just take 
• S = X × Y and 
• A = { (x,y) | y=f(x)}  ⊆ S

• if we can solve the decision problem for A then we can 
compute the function f. (How?)



Languages and Decision Problems

• The decision problem for a language L over 
{0,1}  is to find an algorithm that, given any 
string w ∈ {0,1}* returns True or False, 
depending on whether w ∈ L or not.

• A suitable encoding can translate any decision 
problem into one about a language. 



Undecidable Problems Exist

• Consider the set of all algorithms (C programs, 
for example) that take binary strings as input 
and return True or False. 

• Each of them accepts a language. There are 
infinitely many algorithms, but only countably 
many: 

• We can arrange them in a sequence A1,A2,A3, 
... 

• Let L1,L2,L3 ... be the languages they accept. 



• Now for each language Li, write Li={wi1,wi2,wi3, … }, ordering 
the elements lexicographically. 

• Now define a new language L (different from all the Li). 
• The language L is defined inductively by:
• L= {w1,w2,w3,…}. We require 
• w1 to be greater than w11, 
• w2 to be greater than both  w1 and w22, 
• w3 to be greater than both w2 and w33

• etc.  



Diagonalizatio
n

• Clearly, the elements of L are lexicographically ordered (since 
wi+1 is taken to be greater than wi). Since the ith element of L is 
greater than the ith element of Li, it follows that L ≠ Li, for all i. 
Thus, no algorithm recognizes the language L.

• Constructions such as this use the diagonalization argument.  
It was first used by Cantor to show that the set of real 
numbers cannot be put into one-to-one correspondence with 
the set of natural numbers, and so is uncountable.



Undecidable Problems in concrete terms

• Consider all pairs (P,I), where P is a C program of type String 
→ String and I is a string. 

• Let L be the set of all pairs (P,I) such that P(I)= “hello” . 
• We claim that there exist no algorithm (C program) for the 

decision problem of L (the set of all pairs (P,I)). 
• Assume the contrary. Then there exists a program H such that:

No, if P(I) ≠  “hello”
H(P,I) = 

Yes, if P(I) = “hello”

=),( IPH



• Let H1 be the program defined by 
– H1(P,I) = if H(P,I) = no then “hello” else “yes”

• Finally, let H2 be the program defined by
– H2(P) = H1(P,P)

• What is H2(H2) now? 

– If H2(H2)= “yes” then (the definition of H1) 
implies H(H2,H2)= “yes” , and then (the 
definition of H) implies H2(H2)= “hello” . 

– If H2(H2)= “hello” then (the definition of 
H1) implies H(H2,H2)= no, and then (the 
definition of H) implies H2(H2) ≠ “hello”.

• Both can’t be true, so we have a Contradiction, Which means our 
original assumption that H must exist was flawed.



Undecidable Problems all around us?

• No matter how hard you try, you'll never 
manage to write a C program that tests a CFG 
grammar for ambiguity. That's undecidable, as 
well as  many other problems about 
grammars. 

• We'd like to know more now about 
undecidable problems, just to get some idea 
of what is impossible to program. 



What is an Algorithm?

• To prove that a certain problem is undecidable, we have to 
show that there is no algorithm for it. 

• For such a proof, however, we need a precise definition of 
algorithm. 

• In the above example, we identified algorithms with C 
programs.

• But is that OK? Is it true that every problem that has an 
algorithmic solution also has a solution by a C program? 

• Even if the answer to the last question is “yes”, it does not 
seem right to define algorithms as C programs. A 
mathematical definition must be simpler! 



Computable Functions

• Importance of having precise definitions of effectively
computable functions, or algorithms, was understood in the 
1920's. There were several attempts to formalize the basic 
notions of computability:

Turing Machines
Post Systems
Recursive Functions
Markov Algorithms
λ-calculus

– We will study many of these in the next few days

• On the surface, these approaches look quite different. It 
turned out, however, that they are all equivalent! All these, 
and all later formalizations (combinatory logic, while
programs, C programs, etc.) give essentially the same meaning 
to the word algorithm .



Church’s Thesis

• The statement that these formalizations 
correspond to the intuitive concept of 
computability is known as Church's Thesis. 

• Church's Thesis is a belief, not a theorem.

• (though we often act as if we believe it is true, 
even though we don’t know its is true)
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