
Church’s Thesis

Algorithms and Decidability

• Self-reference
1. Example. This sentence is false.

2. Example. There is a barber in a village, and he shaves
precisely those men in the village who do not shave
themselves. Does he shave himself?

3. Example. Programs as data

• Self referencing systems are interesting because
they can lead to paradoxes.

Mechanizing Mathematics

• Arithmetic and other big fragments of Mathematics can be
represented as formal systems.

• Whitehead and Russel's Principia Mathematica (1910--1913)
is a grand example of an attempt at formalizing the whole of
Mathematics from the logical scratch.

• Statements are represented by precise formulas; some
formulas are taken as axioms;

• Theorems are derived from axioms and previously proved
theorems by precise rules of deduction.

• Example. (∃ n ≥ 3)(∃ x)(∃ y)(∃ z) xn + yn = zn

Completeness
• Some formal systems are complete:

– all true formulas are theorems of the system.

• Examples are propositional and predicate calculi.

• In 1936, Gödel proved the famous Incompleteness Theorem,
• It says that the proposed formalization of Arithmetic (as well

as any reasonable extension of it) is incomplete:
– there are sentences that are true, but unprovable in the system.

• Gödel managed to express theoremhood within the system
and then construct a formula that (essentially) says I am not a
theorem.

Decision Problems

• Given a set S and a subset A of S, the corresponding decision
problem is to find an algorithm that takes an arbitrary
element x of S as input and returns True or False depending
on whether x∈A or x∉A.

• Example. Is a given number n prime?

• Example. Is a given CFG G ambiguous?

• More generally,

• given a function f: X → Y, we may be interested in the
existence of an algorithm that given an input x ∈ X produces
as output f(x) ∈ Y.

• Such problems can be reduced to decision problems. Just take
• S = X × Y and
• A = { (x,y) | y=f(x)} ⊆ S

• if we can solve the decision problem for A then we can
compute the function f. (How?)

Languages and Decision Problems

• The decision problem for a language L over
{0,1} is to find an algorithm that, given any
string w ∈ {0,1}* returns True or False,
depending on whether w ∈ L or not.

• A suitable encoding can translate any decision
problem into one about a language.

Undecidable Problems Exist

• Consider the set of all algorithms (C programs,
for example) that take binary strings as input
and return True or False.

• Each of them accepts a language. There are
infinitely many algorithms, but only countably
many:

• We can arrange them in a sequence A1,A2,A3,
...

• Let L1,L2,L3 ... be the languages they accept.

• Now for each language Li, write Li={wi1,wi2,wi3, … }, ordering
the elements lexicographically.

• Now define a new language L (different from all the Li).
• The language L is defined inductively by:
• L= {w1,w2,w3,…}. We require
• w1 to be greater than w11,
• w2 to be greater than both w1 and w22,
• w3 to be greater than both w2 and w33

• etc.

Diagonalizatio
n

• Clearly, the elements of L are lexicographically ordered (since
wi+1 is taken to be greater than wi). Since the ith element of L is
greater than the ith element of Li, it follows that L ≠ Li, for all i.
Thus, no algorithm recognizes the language L.

• Constructions such as this use the diagonalization argument.
It was first used by Cantor to show that the set of real
numbers cannot be put into one-to-one correspondence with
the set of natural numbers, and so is uncountable.

Undecidable Problems in concrete terms

• Consider all pairs (P,I), where P is a C program of type String
→ String and I is a string.

• Let L be the set of all pairs (P,I) such that P(I)= “hello” .
• We claim that there exist no algorithm (C program) for the

decision problem of L (the set of all pairs (P,I)).
• Assume the contrary. Then there exists a program H such that:

No, if P(I) ≠ “hello”
H(P,I) =

Yes, if P(I) = “hello”

=),(IPH

• Let H1 be the program defined by
– H1(P,I) = if H(P,I) = no then “hello” else “yes”

• Finally, let H2 be the program defined by
– H2(P) = H1(P,P)

• What is H2(H2) now?

– If H2(H2)= “yes” then (the definition of H1)
implies H(H2,H2)= “yes” , and then (the
definition of H) implies H2(H2)= “hello” .

– If H2(H2)= “hello” then (the definition of
H1) implies H(H2,H2)= no, and then (the
definition of H) implies H2(H2) ≠ “hello”.

• Both can’t be true, so we have a Contradiction, Which means our
original assumption that H must exist was flawed.

Undecidable Problems all around us?

• No matter how hard you try, you'll never
manage to write a C program that tests a CFG
grammar for ambiguity. That's undecidable, as
well as many other problems about
grammars.

• We'd like to know more now about
undecidable problems, just to get some idea
of what is impossible to program.

What is an Algorithm?

• To prove that a certain problem is undecidable, we have to
show that there is no algorithm for it.

• For such a proof, however, we need a precise definition of
algorithm.

• In the above example, we identified algorithms with C
programs.

• But is that OK? Is it true that every problem that has an
algorithmic solution also has a solution by a C program?

• Even if the answer to the last question is “yes”, it does not
seem right to define algorithms as C programs. A
mathematical definition must be simpler!

Computable Functions

• Importance of having precise definitions of effectively
computable functions, or algorithms, was understood in the
1920's. There were several attempts to formalize the basic
notions of computability:

Turing Machines
Post Systems
Recursive Functions
Markov Algorithms
λ-calculus

– We will study many of these in the next few days

• On the surface, these approaches look quite different. It
turned out, however, that they are all equivalent! All these,
and all later formalizations (combinatory logic, while
programs, C programs, etc.) give essentially the same meaning
to the word algorithm .

Church’s Thesis

• The statement that these formalizations
correspond to the intuitive concept of
computability is known as Church's Thesis.

• Church's Thesis is a belief, not a theorem.

• (though we often act as if we believe it is true,
even though we don’t know its is true)

	Church’s Thesis
	Algorithms and Decidability
	Mechanizing Mathematics
	Completeness
	Decision Problems
	Slide Number 6
	Languages and Decision Problems
	Undecidable Problems Exist
	Slide Number 9
	Diagonalization
	Undecidable Problems in concrete terms
	Slide Number 12
	Undecidable Problems all around us?
	What is an Algorithm?
	Computable Functions
	Church’s Thesis

