Church’s Thesis
Algorithms and Decidability

• Self-reference

1. Example. This sentence is false.

2. Example. There is a barber in a village, and he shaves precisely those men in the village who do not shave themselves. Does he shave himself?

3. Example. Programs as data

• Self referencing systems are interesting because they can lead to paradoxes.
Mechanizing Mathematics

- Arithmetic and other big fragments of Mathematics can be represented as formal systems.
- Whitehead and Russel's *Principia Mathematica* (1910--1913) is a grand example of an attempt at formalizing the whole of Mathematics from the logical scratch.
- Statements are represented by precise formulas; some formulas are taken as axioms;
- Theorems are derived from axioms and previously proved theorems by precise rules of deduction.

- **Example.** \((\exists n \geq 3)(\exists x)(\exists y)(\exists z) x^n + y^n = z^n\)
Completeness

• Some formal systems are complete:
 – all true formulas are theorems of the system.

• Examples are propositional and predicate calculi.

• In 1936, Gödel proved the famous Incompleteness Theorem,
 It says that the proposed formalization of Arithmetic (as well as any reasonable extension of it) is incomplete:
 – there are sentences that are true, but unprovable in the system.

• Gödel managed to express theoremhood within the system and then construct a formula that (essentially) says I am not a theorem.
Decision Problems

• Given a set S and a subset A of S, the corresponding decision problem is to find an algorithm that takes an arbitrary element x of S as input and returns True or False depending on whether $x \in A$ or $x \notin A$.

• **Example.** Is a given number n prime?

• **Example.** Is a given CFG G ambiguous?
• More generally,

• given a function $f: X \rightarrow Y$, we may be interested in the existence of an algorithm that given an input $x \in X$ produces as output $f(x) \in Y$.

• Such problems can be reduced to decision problems. Just take
 • $S = X \times Y$ and
 • $A = \{ (x,y) \mid y=f(x) \} \subseteq S$

• if we can solve the decision problem for A then we can compute the function f. (How?)
Languages and Decision Problems

• The decision problem for a language L over \{0,1\} is to find an algorithm that, given any string $w \in \{0,1\}^*$ returns True or False, depending on whether $w \in L$ or not.

• A suitable encoding can translate any decision problem into one about a language.
Undecidable Problems Exist

• Consider the set of all algorithms (C programs, for example) that take binary strings as input and return True or False.

• Each of them accepts a language. There are infinitely many algorithms, but only countably many:

• We can arrange them in a sequence A_1, A_2, A_3, \ldots

• Let L_1, L_2, L_3, \ldots be the languages they accept.
Now for each language L_i, write $L_i=\{w_{i1}, w_{i2}, w_{i3}, \ldots \}$, ordering the elements lexicographically.

Now define a new language L (different from all the L_i).

The language L is defined inductively by:

- $L= \{w_1, w_2, w_3, \ldots \}$. We require
- w_1 to be greater than w_{11},
- w_2 to be greater than both w_1 and w_{22},
- w_3 to be greater than both w_2 and w_{33}
- etc.
Diagonalization

• Clearly, the elements of L are lexicographically ordered (since \(w_{i+1} \) is taken to be greater than \(w_i \)). Since the \(i^{th} \) element of L is greater than the \(i^{th} \) element of \(L_i \), it follows that \(L \neq L_i \), for all \(i \). Thus, no algorithm recognizes the language L.

• Constructions such as this use *the diagonalization argument*. It was first used by Cantor to show that the set of real numbers cannot be put into one-to-one correspondence with the set of natural numbers, and so is *uncountable*.
Undecidable Problems in concrete terms

- Consider all pairs \((P,I)\), where \(P\) is a C program of type \(\text{String} \rightarrow \text{String}\) and \(I\) is a string.
- Let \(L\) be the set of all pairs \((P,I)\) such that \(P(I) = \text{"hello"}\).
- We claim that there exist no algorithm (C program) for the decision problem of \(L\) (the set of all pairs \((P,I)\)).
- Assume the contrary. Then there exists a program \(H\) such that:

\[
H(P,I) = \begin{cases}
\text{No, if } P(I) \neq \text{"hello"} \\
\text{Yes, if } P(I) = \text{"hello"}
\end{cases}
\]
• Let H_1 be the program defined by
 $H_1(P,I) = \text{if } H(P,I) = \text{no} \text{ then } \text{"hello" else "yes"}$
• Finally, let H_2 be the program defined by
 $H_2(P) = H_1(P,P)$
• What is $H_2(H_2)$ now?

 – If $H_2(H_2) = \text{"yes"}$ then (the definition of H_1) implies $H(H_2,H_2) = \text{"yes"}$, and then (the definition of H) implies $H_2(H_2) = \text{"hello"}$.

 – If $H_2(H_2) = \text{"hello"}$ then (the definition of H_1) implies $H(H_2,H_2) = \text{no}$, and then (the definition of H) implies $H_2(H_2) \neq \text{"hello"}$.

• Both can’t be true, so we have a Contradiction, Which means our original assumption that H must exist was flawed.
Undecidable Problems all around us?

- No matter how hard you try, you'll never manage to write a C program that tests a CFG grammar for ambiguity. That's undecidable, as well as many other problems about grammars.

- We'd like to know more now about undecidable problems, just to get some idea of what is impossible to program.
What is an Algorithm?

• To prove that a certain problem is undecidable, we have to show that there is no algorithm for it.
• For such a proof, however, we need a precise definition of algorithm.
• In the above example, we identified algorithms with C programs.

• But is that OK? Is it true that every problem that has an algorithmic solution also has a solution by a C program?

• Even if the answer to the last question is “yes”, it does not seem right to define algorithms as C programs. A mathematical definition must be simpler!
Computable Functions

• Importance of having precise definitions of *effectively* computable functions, or algorithms, was understood in the 1920's. There were several attempts to formalize the basic notions of computability:

 - Turing Machines
 - Post Systems
 - Recursive Functions
 - Markov Algorithms
 - λ-calculus

 – We will study many of these in the next few days

• On the surface, these approaches look quite different. It turned out, however, that they are all equivalent! All these, and all later formalizations (combinatory logic, *while* programs, C programs, etc.) give essentially the same meaning to the word *algorithm*.
Church’s Thesis

- The statement that these formalizations correspond to the intuitive concept of computability is known as *Church's Thesis*.

- Church's Thesis is a belief, not a theorem.

- (though we often act as if we believe it is true, even though we don’t know it is true)