CS311
Computational Structures

Tim Sheard & James Hook
Portland State University

Syllabus and Class Preliminaries
Registration Details

CRN 11026 (Sheard). 11027 (Hook)
CS 311 Computational Structures (4 cr)
Times: Tue & Thur 10:00-11:50 (Sheard).
 Place: FAB 40-06
Tue & Thur 14:00-15:50 (Hook).
 FAB 40-06 (Hook)
Contact Details:

• Tim Sheard:
 – Office: Fourth Ave Building (FAB) 120-04
 – Telephone: (503) 725-2410
 – Email: sheard@cs.pdx.edu

• James Hook
 Telephone 503-725-5166
 email hook@cs.pdx.edu
Teaching assistant:

– Caylee Hogg
– Email caylee.hogg@gmail.com
– Office hours: TBA

• Further arrangements to be made as the class progresses.
Exams

• Midterm:
 – Tuesday November 12, 2013

• Final:
 – Tuesday **December 10, 2013, 10:15-12:05** (Sheard)
 – Monday **December 9, 2013, 10:15-12:05** (Hook)

• The University scheduled final exam period is not the same as normal class hours!
Methods of assessment:

<table>
<thead>
<tr>
<th>Assessment Type</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Exercises</td>
<td>10%</td>
</tr>
<tr>
<td>Start in class, turn in by Thursday class time</td>
<td></td>
</tr>
<tr>
<td>Homework (8 weekly homeworks)</td>
<td>40%</td>
</tr>
<tr>
<td>Midterm (April 30, 2013)</td>
<td>20%</td>
</tr>
<tr>
<td>Final exam (June 11, 2013)</td>
<td>30%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100%</td>
</tr>
</tbody>
</table>
Exercises

• Exercises are short (less than 1 hour) that are meant to make you think.
• Exercises are assigned on Tuesday and are due via D2L by class time on Thursday.
• Each exercise is worth 1 point.
 – You get full credit for making a good-faith effort to answer the questions.
 – You get 0 points otherwise.
Policies:

• By default, all deadlines are firm.

• We will be as flexible as possible in accommodating special circumstances; but advance notice will make this a lot easier.
Academic Integrity

• We follow the standard PSU guidelines for academic integrity. Students are expected to be honest in their academic dealings. Dishonesty is dealt with severely.

• Examinations. Notes and such, only as the instructor allows.

• Homework.
 – Discussion is good;
 – Items turned in should be your own individual work. You are encouraged to talk to other people about the homework problems, but you must write up your answers independently. If you're stuck with a problem, please ask for help.
Course Text:

Introduction to the Theory of Computation
(3rd edition)
Michael Sipser
ISBN-13 978-1-133-18779-0

Home page of the text book:
It looks like this!
Topics covered

- Mathematical Preliminaries
- Finite State Automata
- Non-deterministic Finite State Automata
- Regular Expressions
- Equivalence of RE DFA NFA
- Regular Language Pumping Lemma
- Context Free Grammars (CFG)
- Push Down Automata (PDA)
- CF pumping Lemma
- Turing Machines
- Church-Turing Thesis
- Decideability
- Diagonalization
- The Halting Problem
- Reducibility
- Complexity
Turning in homework

• You turn in homework via D2L. You may do it by hand, and then scan your assignment into a pdf, or you may use some tool to typeset your homework. Please submit a pdf file.

• Please start every homework with a line with three things: homework number, your name, and your email. It should look like this

• CS311 Homework #1 Tom Smith smith@cs.pdx.edu
The Big Picture

• Computer Science is about computation
• A computational system describes a certain kind of computation in a precise and formal way (DFA, Mealy machines).
 – What can it compute?
 – How much does it cost?
 – How is it related to other systems?
 – Can more than one system describe exactly the same computations?
History

• Early computational systems were based on languages.
• This led to a view of computation that was language related.
 – E.g. which strings are in the language.
 – Is one language a subset (or superset) of another.
 – Can we decide?
 – If we can decide, what is the worst case cost?
 – Are there languages for which the membership predicate cannot be computed?
A Tour of this class

• Languages as computation
 – A hierarchy of languages
 • Regular languages
 • Context Free languages
 • Turing machines
 – A Plethora of systems
 • Regular expressions, DFAs, NFAs, context free grammars, push down automata, Mealy machines, Turing machines, Post systems, and more.

• Computability
 – What can be computed
 – Self applicability (Lisp self interpreter)
 – The Halting Problem
Take aways

• A computational system is like a programming language.
 – A program describes a computation.
 – Different languages have different properties.
 – A language can be analyzed
 • A formal computational system is just data (DFA is a 5-tuple)
 • The structure can be used to prove things about the system
 – What properties hold of all programs?
 – What can never happen?
 – A program can be analyzed
 • A program is just data
 • What does this program do?
 • Does it do the same as another?
 • What is its cost?
 • Is it hard understand?
Why is this important?

• Languages are everywhere.
• Many technologies are based upon languages.
 – Parsing, grep, transition systems.
• The historical record has a beauty that is worth studying in its own right.
• Reasoning about computation is the basis for modern computing.
 – What do programs do? What can we say about what they don’t do? What do they cost? What systems make writing certain class of programs easier?
• Computational Systems and Programs are just data.
• Knowing what is possible, and what isn’t.