NFA defined

Sipser pages 47 - 54
NFA

• A Non-deterministic Finite-state Automata (NFA) is a language recognizing system similar to a DFA.
• It supports a level of non-determinism. I.e. At some points in time it is possible for the machine to take on many next-states.
• Non-determinism makes it easier to express certain kinds of languages.
Nondeterministic Finite Automata (NFA)

• When an NFA receives an input symbol a, it can make a transition to zero, one, two, or even more states.
 – each state can have multiple edges labeled with the same symbol.

• An NFA accepts a string w iff there exists a path labeled w from the initial state to one of the final states.
 – In fact, because of the non-determinism, there may be many states labeled with w
Example N1

- The language of the following NFA consists of all strings over \(\{0, 1\} \) whose 3\(^{rd}\) symbol from the right is 0.

- Note \(Q_0 \) has multiple transitions on 0 and \(Q_3 \) has no transitions on both 0 and 1
Example N2

- The NFA N_2 accepts strings beginning with 0.

Note Q_0 has no transition on 1

- Note Q_0 has no transition on 1
 - It is acceptable for the transition function to be undefined on some input elements for some states.
Suppose N_1 receives the input string 0011. There are three possible execution sequences:

1. $q_0 \rightarrow q_0 \rightarrow q_0 \rightarrow q_0 \rightarrow q_0$
2. $q_0 \rightarrow q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3$
3. $q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3$

Only the second finishes in an accept state. The third even gets stuck (cannot even read the fourth symbol).

As long as there is at least one path to an accepting state, then the string is accepted.
Input = 0011

Note, that this path is stuck at q3
A note about NFA’s

• In the Sipser text book (page 53) the definition for an NFA is slightly different from what we will see on the next page.

• The NFA that Sipser defines, we call an NFAe.
 – It allows transitions on edges labeled with ε (the empty string)

• We talk about this in a separate set of notes.
Formal Definition

• An NFA is a quintuple \(A = (Q, \Sigma, \delta, s, F) \), where the first four components are as in a DFA, and the transition function produces values in \(P(Q) \) (the power set of \(Q \)) instead of \(Q \). Thus

\[\delta: Q \times \Sigma \rightarrow P(Q) \]

note that \(\delta \) returns a set of states!
It might return the emptyset!

• A NFA \(A = (Q, \Sigma, \delta, s, F) \), accepts a string \(w_1w_2...w_n \) (an element of \(\Sigma^* \)) iff there exists a sequence of states \(r_1r_2...r_n r_{n+1} \) such that

1. \(r_1 = s \)
2. \(r_{i+1} \in \delta(r_i, w_i) \)
3. \(r_{n+1} \in F \)

Compare with DFA

A DFA = \((Q, \Sigma, \delta, q_0, F) \), accepts a string \(w = "w_1w_2...w_n" \) iff

There exists a sequence of states \([r_0, r_1, ... r_n] \) with 3 conditions

1. \(r_0 = q_0 \)
2. \(\delta(r_{i}, w_{i+1}) = r_{i+1} \)
3. \(r_n \in F \)
The extension of the transition function

- Let an NFA $A = (Q, \Sigma, \delta, s, F)$

- The extension $\overline{\delta} : Q \times \Sigma^* \rightarrow \mathcal{P}(Q)$ extends δ so that it is defined over a string of input symbols, rather than a single symbol. It is defined by

 - $\overline{\delta}(q, \varepsilon) = \{ q \}$
 - $\overline{\delta}(q, x:xs) = \bigcup_{p \in \overline{\delta}(q, x)} \overline{\delta}(p, xs)$

Compute this by taking the union of the sets

$\overline{\delta}(p, xs)$, where p varies over all states in the set $\overline{\delta}(q, x)$

- First compute $\overline{\delta}(q, x)$, this is a set, call it S.
- for each element, p in S, compute $\overline{\delta}(p, xs)$,
- Union all these sets together.
Intuition

• At any point in the walk over a string, such as “000” the machine can be in a set of states.

• To take the next step, on a character ‘c’, we create a new set of states. All those reachable from any of the old sets on a single ‘c’
\[\delta(q, \varepsilon) = \{q\} \]
\[\delta(q, x:xs) = \bigcup_{p \in \delta(q, x)} \delta(p, xs) \]

Consider computing \(\delta(Q_0, 001) \)

The answer will be \(\{Q_0, Q_2, Q_3\} \)

Start by one-step computing \(\delta(Q_0, 0) = \{Q_0, Q_1\} \)

So for each of \(Q_0, Q_1 \) recursively many-step compute

\[\delta(Q_0, 01) = \{Q_0, Q_2\} \]
\[\delta(Q_1, 01) = \{Q_3\} \]

Then union them together!
Another NFA Acceptance Definition

- An NFA accepts a string w iff $\delta(s, w)$ contains a final state. The language of an NFA N is the set $L(N)$ of accepted strings:

$$L(N) = \{ w \mid \delta(s, w) \cap F \neq \emptyset \}$$

- Compare this with the 2 definitions of DFA acceptance in last weeks lecture.

A DFA $= (Q, \Sigma, \delta, q_0, F)$, accepts a string $w = "w_1w_1...w_n"$ iff

There exists a sequence of states $[r_0, r_1, ... r_n]$ with 3 conditions

1. $r_0 = q_0$
2. $\delta(r_i, w_{i+1}) = r_{i+1}$
3. $r_n \in F$

A DFA $= (Q, \Sigma, \delta, q_0, F)$ accepts a string w iff $\delta(q_0, w) \in F$

More formally

$L(A) = \{ w \mid \delta(\text{Start}(A), w) \in \text{Final}(A) \}$
Implementation

• Implementation of NFAs has to be deterministic, using some form of backtracking to go through all possible executions.

• Any thoughts on how this might be accomplished?
In Haskell

data NFA q s =
 NFA [q] -- states
 [s] -- symbols
 (q -> s -> [q]) -- trans
 q -- start
 [q] -- accept states

Compare with DFA

data DFA q s =
 DFA [q] -- states
 [s] -- symbols
 (q -> s -> q) -- trans
 q -- start state
 [q] -- accept states
Path acceptance

allSeq xs 0 = []
allSeq xs 1 = [[x] | x <- xs]
allSeq xs n = [y:ys | ys <- allSeq xs (n-1), y <- xs]

cond1 nfa (r:rs) = r == (start nfa)
cond1 nfa [] = False

cond2 nfa [] [r] = True
cond2 nfa (w:ws) (r1:r2:rs) =
 (elem r2 (trans nfa r1 w)) && (cond2 nfa ws (r2:rs))
cond2 nfa _ _ = False

cond3 nfa [r] = isFinal nfa r
cond3 nfa (r:rs) = cond3 nfa rs
cond3 nfa _ = False

cond nfa ws path = cond1 nfa path &&
 cond2 nfa ws path &&
 cond3 nfa path

accept1 nfa ws = any (cond nfa ws) paths
 where paths = allSeq (states nfa) (1 + length ws)

String = “ab”
Seq c1 c2 c3
[0,0,0]= T F F
[1,0,0]= F F F
[2,0,0]= F F F
[0,1,0]= T T F
[1,1,0]= F T F
[2,1,0]= F F F
[0,2,0]= T F F
[1,2,0]= F F F
[2,2,0]= F F F
[0,0,1]= T F T
[1,0,1]= F F T
[2,0,1]= F F T
[0,1,1]= T F T
[1,1,1]= F T T
[2,1,1]= F F T
[0,2,1]= T F T
[1,2,1]= F F T
[2,2,1]= F F T
[0,0,2]= T F F
[1,0,2]= F T F
[2,0,2]= F F F
[0,1,2]= T F F
[1,1,2]= F F F
[2,1,2]= F F F
[0,2,2]= T F F
[1,2,2]= F F F
[2,2,2]= F T F
Transition extension acceptance

closure:: Ord q => NFA q s -> [q] -> s -> [q]
closure nfa qs s =
 unionsL [trans nfa q s | q <- qs]

deltaBar nfa q [] = [q]
deltaBar nfa q (w:ws) =
 unionsL [deltaBar nfa p ws |
 p <- closure nfa [q] w]

acceptNFA2 nfa ws =
 not(null(intersect last (accept nfa)))
where last = deltaBar nfa (start nfa) ws

deltaBar n2 (start n2) "ab" = [0,1]
Not(null(intersect [0,1] (accept n2))) = True