
Computability
via

 Recursive Functions

Church’s Thesis

• All effective computational systems are
equivalent!

• To illustrate this point we will present the
material from chapter 4 using the partial
recursive functions, rather than Turing machines.

• We believe the arguments we will make are
easier to follow than the Turing machine
arguments.

Building blocks of Computability Theory

• A syntactic notion of program, where each program
can be described as a number, and all programs can be
written down as list of numbers.

• The ability to write down the trace of a computation
that can be verified by a series of simple (terminating)
steps.

• Having a large enough set of programs, in particular
there needs to be a universal program that can read a
program and its input and generate its output.

“Implementing” the
 Primitive Recursive Programs

• We have argued that the Primitive Recursive
programs are simple yet very expressive

• Expressive enough to supply (almost) all the
building blocks of computability theory

• We demonstrate this by giving each block an
exact implementation

• We implement these in Haskell so we can run
them.

Describing the PR functions as Haskell data

data PrimRec
 = Z
 | S
 | P Int
 | C PrimRec [PrimRec]
 | PR PrimRec PrimRec

• By design, this is similar to our context free grammar

describing the primitive recursive functions
• This Haskell datatype exactly describes an inductively

defined set.

Our grammar
Term → Z
 | S
 | P n nth projection
 | C Term [Term1, … ,Termn] composition
 | PR Term Term primitive recursion
 | (Term) grouping

An interpreter
eval :: PrimRec -> [Integer] -> Integer
eval Z _ = 0
eval S [x] = x+1
eval S _ = 0 -- default value for erroneous case
eval (P n) xs | n <= length xs = nth n xs
eval (P n) xs = 0 -- default value for erroneous case
eval (C f gs) xs = eval f (map (\g -> eval g xs) gs)
eval (PR g h) (x:xs) =
 if x==0 then eval g xs
 else eval h ((x-1) : eval (PR g h) ((x-1):xs) : xs)
eval (PR _ _) [] = 0 -- default value for erroneous case

nth _ [] = 0 -- default value for erroneous case
nth 0 _ = 0 -- default value for erroneous case
nth 1 (x:_) = x
nth (n) (_:xs) = nth (n-1) xs

Defined for every PrimRec every
input of any length, returns 0 for ill-
formed terms where aritys don’t
match

Pairing functions
• Assign a unique integer to every pair of

integers.
• Recover the pair from the result

0 1 2 3 4 5 6

0 1 3 6 10 15 21 28

1 2 5 9 14 20 27

2 4 8 13 19 26

3 7 12 18 25

4 11 17 24

5 16 23

6 22

Haskell functions
pair :: Integer -> Integer -> Integer
pair k1 k2 = ((k1 + k2) * (k1 + k2 +1) `div` 2) + k2

• The pairs can be deconstructed by this code fragment:

unpair :: Integer -> (Integer,Integer)
unpair z = let w = (squareRoot (8*z + 1) - 1)
 `div`
 2
 t = (w * w + w) `div` 2
 y = z - t
 x = w - y
 in (x, y)

Pairing to encode Lists

• [] (0, 0) 0
• [2] (1, (2, (0,0))) 13
• [2,3] (1, (2, (1, (3, (0, 0))))) 246751
• [2,3,4] (1, (2, (1, (3, (1, (4, (0,0)))))))

 94523914127548123793040376
• Rules

– Nil is the pair (0,0)
– (x:xs) is the nested pair (1,(x, encoding of xs))
– Recall [1,3,5] is (1 : (3 : (5 : [])))

Haskell code
eList :: [Integer] -> Integer
eList [] = pair 0 0
eList (x:xs) = pair 1 (pair x (eList xs))

dList :: Integer -> [Integer]
dList l = let (t,c) = unpair l
 (h, tl) = unpair c
 in case t of
 0 -> []
 1 -> h:(dList tl)
 _ -> [] -- make it total (but nonsense)

[2,3]
(1, (2, (1, (3, (0, 0)))))

Extending to other data

• We can use pairing to encode any inductively
defined data set

• In particular we can use paring to endode the
PrimRec datatype of Haskell

ePR :: PrimRec -> Integer
ePR Z = pair 0 0
ePR S = pair 1 0
ePR (P i) = pair 2 (toInteger i)
ePR (C f gs) = pair 3 (pair (ePR f) (eList (map ePR gs)))
ePR (PR g h) = pair 4 (pair (ePR g) (ePR h))

dPR x = let (t,b) = unpair x
 (b1,b2) = unpair b -- note: Lazy
 in case t of
 0 -> Z
 1 -> S
 2 -> P (fromInteger b)
 3 -> C (dPR b1) (map dPR (dList b2))
 4 -> PR (dPR b1) (dPR b2)
 _ -> Z

data PrimRec
= Z
 | S

 | P Int
 | C PrimRec [PrimRec]
 | PR PrimRec PrimRec

Example

• Plus = PR (P 1) (C S [P 2])

(4,((2,1),(3,((1,0),(1,((2,2),(0,0)))))))

4511739842654672905730185440573223378237806974280320

dPR

4511739842654672905730185440573223378237806974280320

PR (P 1) (C S [P 2])

A cons cell (x:xs)

The empty list []

Are there non-Primitive Recursive Functions?

x dPR x 0 1 2 3 4 5 6 7 8 9 10

0 Z 0 0 0 0 0 0 0 0 0 0 0

1 S 1 2 3 4 5 6 7 8 9 10 11

2 Z 0 0 0 0 0 0 0 0 0 0 0

3 P 1 0 1 2 3 4 5 6 7 8 9 10

4 S 1 2 3 4 5 6 7 8 9 10 11

5 Z 0 0 0 0 0 0 0 0 0 0 0

6 C Z [] 0 0 0 0 0 0 0 0 0 0 0

7 P 1 0 1 2 3 4 5 6 7 8 9 10

8 S 1 2 3 4 5 6 7 8 9 10 11

9 Z 0 0 0 0 0 0 0 0 0 0 0

10 PR Z Z 0 0 0 0 0 0 0 0 0 0 0

 dPR x applied to the number on top

The red numbers on the diagonal show the result of
applying ith function to i.

diagonal x =
 (eval p (ncopies (arity p) x))
 where p = dPR x

notdiagonal x = 1 + diagonal x

• Argue why notdiagonal is not primitive recursive

Argument
• Proof by contradiction
• Assume notdiagonal was primitive recursive
• Then there is some j such that

– ePr j = notdiagonal eval (ePr i) i

We see
diagonal j = w
notdiagonal j = w

But we defined
 notdiagonal x = diagonal x + 1
So we have a contradiction

x ePr x 0 1 … j …

0 Z 0 0 … 0 …

1 S 1 2 … J+1 …

…

J notdiagonal w

…

What facts did we assume?
• Primitive recursive functions are total
• There exists an eval function

– Given a PrimRec and arguments returns the result
• There is a function from numbers to programs

– ePR

• An effective enumeration of a set of total-functions is a
mapping from the natural numbers onto the set of
funtions; f1, f2, … fn, together with a computable
function eval such that
– (eval i x = fi(x))

Theorem

• Every effective enumeration is incomplete. That is
there exist some total computable functions
which are not included in the enumeration.

• Corrollaries
– There is no effective enumeration of the computable

functions
– Any enumeration of the computable functions must

include some partial functions!

Pairing is primitive recursive
• There are functions in PrimRec that denote the

pairing functions.

pair :: Integer -> Integer -> Integer
pair k1 k2 = ((k1 + k2) * (k1 + k2 +1) `div` 2) + k2

unpair :: Integer -> (Integer,Integer)
unpair z = let w = (squareRoot (8*z + 1) - 1)
 `div`
 2
 t = (w * w + w) `div` 2
 y = z - t
 x = w - y
 in (x, y)

• We know from the homework that most of the parts
of pair and unpair are in PrimRec. What ones are
missing?

Bounded search

div x y = { find the smallest z
 | (z == x) || ((y*z <= x) && (x < y*(z+1)))}

sqrt x = { find the smallest z
 | (z == x) || ((z*z <= x) && (x < (z+1)*(z+1)))}
A search that is bounded by a known value.
This operation, which we call bmin is primtive recursive. In

fact a definition for it is given in Appendix A.2
Thus we can define div and sqrt as primitive recursive

pair

pair k1 k2 = ((k1 + k2) * (k1 + k2 +1) `div` 2) + k2

pair = C plus [C div [C times [C plus [P 1, P 2],
 C S [C plus [P 1, P 2]]],
 mkconst 2],
 P 2]

unpair
unpair z = let w = (squareRoot (8*z + 1) - 1) `div` 2
 t = (w * w + w) `div` 2
 y = z - t
 x = w - y
 in (x, y)

w = C div [C pred [C sqrt [C S [C times [mkconst 8, P 1]]]],
 mkconst 2]
t = C div [C plus [C times [w,w],w], mkconst 2]
pi2 = C monus [P 1,t]
pi1 = C monus [w,pi2]

unpair x = (pi1 x, pi2 x)

Building Blocks

• A syntactic notion of program, where each
program can be described as a number, and all
programs can be written down as list of
numbers.

• We can now provide the first building block
using the primitive recursive functions

• Here are the first 11 functions
• [Z, S, Z, P 1, S, Z, C Z [], P 1, S, Z, PR Z Z, …]
• Why do some functions appear twice?

Partial Recursive programs
data MuR = Z

 | S

 | P Int

 | C MuR [MuR]

 | PR MuR MuR

 | Mu MuR

eval :: MuR -> [Integer] -> Integer

eval Z _ = 0

eval S (x:_) = x+1

eval S _ = 0 -- relaxed

eval (P n) xs = nth n xs

eval (C f gs) xs = eval f (map (\g -> eval g xs) gs)

eval (PR g h) (0:xs) = eval g xs

eval (PR g h) (x:xs) = eval h ((x-1) : eval (PR g h) ((x-1):xs) : xs)

eval (PR _ _) [] = 0 -- relaxed

eval (Mu f) xs = try_from f xs 0

try_from f xs n = if eval f (n:xs) == 0 then n else try_from f xs (n+1)

Properties
• Like PrimRec with one additional operator Mu

• Unlike for PrimRec, eval is not total

eval (Mu f) xs = try_from f xs 0

try_from f xs n =
 if eval f (n:xs) == 0
 then n
 else try_from f xs (n+1)

Partial Recursive programs are Turing Complete

• Partial recursive functions can simulate TM
– We can represent TM using numbers using partial recursive

pairing
– We can represent TM configurations and computation

histories using pairing
– We can write a total predicate, T, (i.e. it doesn’t use Mu)

such that
• T machine input history = 1 if the machine history is a halting history

• T machine input history = 0 If the machine history is not a halting history

– We can write a total function, U, that given a machine, a
halting history, that returns the final output

– Given a TM: e, an input: x, we can use unbounded search
that return the least y such that T(e,x,y) holds. Note that like
a TM, this might not halt because it does use Mu operator

Traces

• For every computation system we defined
acceptance by the existence of a trace

• Acceptance by DFA by a sequence of states
• Acceptance of CFG by a sequence of

derivations
• Acceptance by PDA
• Acceptance by TM

DFA trace
• A DFA = (Q,Σ,δ,q0,F), accepts a string
• w = “w1w2…wn” iff

– There exists a sequence of states [r0, r1, … rn]
 with 3 conditions
1. r0 = q0

2. δ(ri,wi+1) = ri+1
3. rn+1 ∈ F

Page 40 in Sisper

Acceptance is about
finding a sequence.

How do we find such

a sequence?

CFG Trace
• The single-step derivation relation ⇒ on (V∪ T)* is defined by:

1. α ⇒ β iff β is obtained from α by replacing an occurrence

of the lhs of a production with its rhs. That is, α'Aα'' ⇒ α'γα''
is true iff A → γ is a production. We say α'Aα'' yields α'γα''

2. We write α ⇒∗ β when β can be obtained from α through a
sequence of several (possibly zero) derivation steps.

3. The language of the CFG , G, is the set
• L(G) = {w∈T* | S ⇒∗ w} (where S is the start symbol of G)

 S ⇒∗ w means there exists a sequence
 S ⇒ W1 ⇒ W2 ⇒ … ⇒ W

PDA trace
• Suppose a string w can be written: w1 w2 … wm

• Wi ∈ Σε Some of the wi are allowed to be ε
• I.e. One may write “abc” as a ε b c ε

• If there exist two sequences
• r0 r1 … rm ∈ Q
• s0 s1 … sm ∈ Γ∗ (The si represent the stack contents at step i)

1. r0=q0 and s0 = ε
2. (ri+1,α) ∈ δ(ri,wi+1,A)

– si = Aβ si+1 = αβ
3. rm ∈ F

The initial state and stack

Corresponding elements in
the sequences are related to
the next via the transition
function.

The last state in the sequence is in the Final states.

TM Trace

• Recall a configuration (ID) has the form α q β
– where α, β ∈ Γ* and q ∈ Q.
– The string α represents the tape contents to the left

of the head.
– The string β represents the non-blank tape contents

to the right of the head, including the currently
scanned cell.

– q represents the current state

• Recall configurations c1,c2 are related by
– c1 |- c2
– If the TM can legally move from c1 to c2

• A computation history (c1, … , cn) is a sequence of

|- related configurations (each ci |- ci+1)

Accepting (rejecting) Histories
• A computation history (c1, … , cn) is called an

accepting history if c1 is a start configuration
and cn is an accepting configuration

• A computation history (c1, … , cn) is called an
rejecting history if c1 is a start configuration
and cn is an rejecting configuration

If a TM does not halt on a given input, there
does not exist an accepting (rejecting) history.

Traces for recursive functions

• A trace for primitive (partial) recursive
functions is not a sequence but a Tree.

• Each node in the tree is labeled with a triple
– (program, input,result)

• Compound programs (C, PR, Mu) have
subtrees.

• In a Trace-tree, the subtrees are related by the
computation rules.

PR (P 1) (C S [P 2]) (2,3) = 5 Program
Input
Result

PR (P 1) (C S [P 2]) (1,3) = 4 C S [P 2] (1,4,3) = 5

S (4) = 5 P 2 (1,4,3) = 4

PR (P 1) (C S [P 2]) (0,3) = 3 C S [P 2] (0,3,3) = 4

S (3) = 4 P 2 (0,3,3) = 3 (P 1) (3) = 3

f(0,x1, ..., xk) = h(x1,...,xk)
f(Succ(n),x1, ..., xk)= g(n, f(n,x1,...,xk), x1,...,xk)

f(x1,...xn) = h(g1(x1,...,xn), ... ,gm(x1,...,xn))

Well formedness of trace trees is
computable by a total function

• We encode trace trees by using pairing
• We use the rules of computation to relate a node

and its subtrees.

• Construction of trace trees is computable by a
partial function.
– If a computation halts we can compute its trace tree
– If it doesn’t the computation of the trace tree will also

loop

Big result

• eval prog (input) = result --- Partial
• trace prog (input) = trace-tree --- Partial
• verify prog input trace-tree = boolean -- Total

• valid program input result trace =
 (verify prog input trace) &&
 (last trace = result) --- Total

• Theorem for n-ary function f

– eval f (n1,…, nk) = w
– If and only if
– There exists a trace-tree c, such that (valid f (n1,…, nk) w c)

The halting problem
• Use diagonalization to show that there does not exist a total partial

recursive program, halt, such that halt (dMuR f) n is True if
and only if eval f n is defined.

• Suppose halt exists, then use it to define
Opposite(x,n) =
 if halt(x,n)
 then loop
 else 0

notdiagonal x = opposite (dMuR x) x

halt(p,n) True False (looping)

opposite(p,n) Loop 0

notdiagonal(n) Loop 0 Where p = dMuR n

halt(notdiagonal,k) True False (looping)

opposite(notdiagonal,k) Loop 0

notdiagonal(k) = Loop 0

halt(p,i) True False (looping)

opposite(p,i) Loop 0

How halt(p,i) and opposite(p,i) are related.

How How halt(p,n) and opposite(p,n) and notdiagonal(n) are related.

The curious case when all are applied to notdiagonal, whose index is k

	Computability �via � Recursive Functions
	Church’s Thesis
	Building blocks of Computability Theory
	“Implementing” the� Primitive Recursive Programs
	Describing the PR functions as Haskell data
	An interpreter
	Pairing functions
	Haskell functions
	Pairing to encode Lists
	Haskell code
	Extending to other data
	Slide Number 12
	Example
	Are there non-Primitive Recursive Functions?
	Slide Number 15
	Argument
	What facts did we assume?
	Theorem
	Pairing is primitive recursive
	Bounded search
	pair
	unpair
	Building Blocks
	Partial Recursive programs
	Properties
	Partial Recursive programs are Turing Complete
	Traces
	DFA trace
	CFG Trace
	PDA trace
	TM Trace
	Accepting (rejecting) Histories
	Traces for recursive functions
	Slide Number 34
	Well formedness of trace trees is computable by a total function
	Big result
	The halting problem
	Slide Number 38

