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Enumeration 

• Recall we said that acceptance by a TM was 
also called recursively enumerable. 

• An enumerator is a machine that 
“enumerates” all strings in a language. 

• Think of it as a Turing machine with a printer. 
– Every string is eventually “printed” 
– Some strings are “printed more than once” 



Computable Functions 

• Importance of having precise definitions of effectively 
computable functions, or algorithms, was understood in the 
1930's. There were several attempts to formalize the basic 
notions of computability: 

– Turing Machines (1936) 
– Post Systems (1936) 
– Recursive Functions (Kleene, 1936) 
– Markov Algorithms (1947) 
– λ-calculus (Church 1936) 

 
• On the surface, these approaches look quite different. It 

turned out, however, that they are all equivalent! All these, 
and all later formalizations (combinatory logic, while 
programs, C programs, etc.) give essentially the same meaning 
to the word algorithm . 



Church’s Thesis 

• The statement that these formalizations correspond 
to the intuitive concept of computability is known as 
Church's Thesis.  
 

• Church's Thesis is a belief, not a theorem. 
 

• (though we often act as if we believe it is true, even 
though we don’t know its is true) 
 



Power of Turing Machines (1) 

• Recall the Church Thesis: Every problem that has an 
algorithmic solution can be solved by a Turing Machine ! 

• How do we become convinced that it is reasonable to believe 
this thesis?  
 

• First, we can develop some programming techniques for TM's, 
allowing us to write machines for more and more complicated 
problems. Structuring states and tape symbols is particularly 
useful. Then, there is a possibility to use one TM as a 
subroutine for another. After having written enough TM's, we 
may get a feeling that everything that we can program in a 
convenient programming language could be done with TM.  
 



Power of Turing Machines (2) 

• Second, we can consider some generalizations 
of the concept of TM (multitape TM's, non-
deterministic TM's, ...) and prove that they are 
essentially just as powerful as the plain TM's.  

 
• Finally, we can prove that all proposed 

formalizations of the concept of computable, of 
which TM's is only one, are equivalent. In later 
lectures we will look at both Kleene and 
Church’s systems. 



Computation using Numerical Functions 

• Weʼre used to thinking about computation as 
something we do with numbers (e.g. on the 
naturals) 
 

• What kinds of functions from numbers to 
numbers can we actually compute? 
 

• To study this, we make a very careful selection 
of building blocks 



Turing-computable functions 

• To formalize the connection between partial 
recursive functions and Turing machines, we 
need to describe how to use TMʼs to compute 
functions on ℕ. 

• We say a function f : ℕ x ℕ x ... x ℕ → ℕ is Turing-
computable if there exists a TM that, when 
started in configuration q01n1⊔1n2⊔...⊔1nk, halts 
with just 1f(n1,n2,...nk) on the tape. 

• Fact: f is Turing-computable iff it is partial 
recursive. 
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