
CS 311: Computational Structures

James Hook and Tim Sheard

November 26, 2013

8 Exploring Computability

This note presents evendence for the Church-Turing thesis by developing in
a little more detail the results showing the the partial recursive functions, as
defined in Section 7, are Turing complete.

Informally, the basic building blocks of computability are

1. A syntactic notion of program, where each program can be described as a
number, and all programs can be written down as list of numbers.

2. The ability to write down the trace of a computation that can be verified
by a series of simple (terminating) steps.

3. Having a large enough set of programs, in particular there needs to be a
universal program (also known as an interpreter) that can read a program
and its input and generate its output.

For Turing machines we had Turing machine descriptions and computation
histories. Note that this is exactly the pattern Sipser uses in all definitions of
acceptance for the machine models he presents. We asserted the existance of
universal Turing machines, but did not describe in detail how one might be
constructed.

For the partial recursive functions we will give a few more details. We
have already shown an interpreter written in Haskell for the primitive recursive
functions (this is an analogue to a universal program, or interpreter). The
extension of this interpreter to partial recursive functions is given as an exercise.

These notes develop all of the mechanisms necessary to encode partial re-
cursive functions as numbers, and exploits this encoding in building programs
illustrating key results of computability. We have structured the notes into
a main narrative, which is sometimes incomplete, and an appendix, which is
sometimes distractingly detailed.

8.1 Pairing Functions

Pairing functions take a pair of natural numbers and encode them as a single
natural number. The pairs can be recovered from the original number.

1

Cantor developed a pairing function that is one-to-one and onto. There
is a reasonable article on these pairing functions on Wikipedia (http://en.
wikipedia.org/wiki/Pairing_function).

The code fragment below implements Cantor’s pairing function:

pair :: Integer -> Integer -> Integer

pair k1 k2 = ((k1 + k2) * (k1 + k2 +1) ‘div‘ 2) + k2

The pairs can be deconstructed by this code fragment:

unpair :: Integer -> (Integer,Integer)

unpair z = let w = (squareRoot (8*z + 1) - 1) ‘div‘ 2

t = (w * w + w) ‘div‘ 2

y = z - t

x = w - y

in (x, y)

Some sample values:

0 1 2 3 4
0 0 2 5 9 14
1 1 4 8 13 19
2 3 7 12 18 25
3 6 11 17 24 32
4 10 16 23 31 40

Note how the numbers flow along the diagonals, from lower left to upper
right.

Using pairing functions, it is possible to encode other datatypes. For exam-
ple, the following fragment of Haskell encodes and decodes lists of Integers:

eList :: [Integer] -> Integer

eList [] = pair 0 0

eList (x:xs) = pair 1 (pair x (eList xs))

dList :: Integer -> [Integer]

dList l = let (t,c) = unpair l

(h, tl) = unpair c

in case t of

0 -> []

1 -> h:(dList tl)

_ -> [] -- make it total; nonsense is nil

In this encoding each list element is represented by a pair. If the first element
is a 0 then it represents the empty list (nil). If the first element is a 1 then
it represents a non-empty list (cons). In that case the second element can be
decoded into the head of the list and the tail of the list (which is itself a pair).

2

For example:

[] (0, 0) 0
[2] (1, (2, (0, 0))) 13

[2, 3] (1, (2, (1, (3, (0, 0))))) 246751
[2, 3, 4] (1, (2, (1, (3, (1, (4, (0, 0))))))) 94523914127548123793040376

In a similar manner the encoding can be extended to any datatype. Consider
the datatype PrimRec to describe the primitive recursive programs described in
Appendix A.1.

data PrimRec

= Z

| S

| P Int

| C PrimRec [PrimRec]

| PR PrimRec PrimRec

The primitive recursive functions can be encoded and decoded with the
following fragment. Note there is one rule for each of the 5 ways we can form
an element of PrimRec.

ePR :: PrimRec -> Integer

ePR Z = pair 0 0

ePR S = pair 1 0

ePR (P i) = pair 2 (toInteger i)

ePR (C f gs) = pair 3 (pair (ePR f) (eList (map ePR gs)))

ePR (PR g h) = pair 4 (pair (ePR g) (ePR h))

dPR x = let (t,b) = unpair x

(b1,b2) = unpair b -- note: Lazy

in case t of

0 -> Z

1 -> S

2 -> P (fromInteger b)

3 -> C (dPR b1) (map dPR (dList b2))

4 -> PR (dPR b1) (dPR b2)

_ -> Z

Using this encoding, called a Gödel numbering, we can see that the Gödel
number of the plus function (PR P1 (C S [P2])) is

*Goedel> ePR $ PR (P 1) (C S [P 2])

4511739842654672905730185440573223378237806974280320

*Goedel> dPR $ 4511739842654672905730185440573223378237806974280320

PR (P 1) (C S [P 2])

This example uses the $ notation from Haskell, which stands for an open paren-
thesis that extends as far to the right as possible, Thus f $ x + 1 means the

3

same thing as f (x + 1). Contrast this with f x + 1, which means (f (x)) + 1.
While this idiom at first seems unusual, in many cases it will remove quite a bit
of syntactic clutter from programs.

8.2 Why we need Partial Functions

How hard is it to define a function that is not in the set of Primitive Recursive
Functions?

In this section we will write a Haskell function that is total, computable, but
not primitive recursive. We will build it by using a technique called diagonal-
ization. The concept of diagonalization was introduced by Cantor to show that
the reals and the natural numbers have different cardinalities, that is, there is
not a one-to-one correspondence between them.

In Cantor’s construction, a countable list of decimal expansions of real num-
bers is assumed. From that list a procedure is defined to build a number that
is different from all in the list. This number is built by taking the diagonal of
the list—building a number that differs from the first in the first position, from
the second in the second position, and so on.

How do we diagonalize over the primitive recursive functions? We start by
building a table that lists all such functions and their values:

The program (dPr x) applied to
x dPR x 0 1 2 3 4 5 6 7 8 9 10 · · ·
0 Z 0 0 0 0 0 0 0 0 0 0 0
1 S 1 2 3 4 5 6 7 8 9 10 11
2 Z 0 0 0 0 0 0 0 0 0 0 0
3 P1 0 1 2 3 4 5 6 7 8 9 10
4 S 1 2 3 4 5 6 7 8 9 10 11
5 Z 0 0 0 0 0 0 0 0 0 0 0
6 C Z [] 0 0 0 0 0 0 0 0 0 0 0
7 P1 0 1 2 3 4 5 6 7 8 9 10
8 S 1 2 3 4 5 6 7 8 9 10 11
9 Z 0 0 0 0 0 0 0 0 0 0 0

10 PR Z Z 0 0 0 0 0 0 0 0 0 0 0

We want to compute a function that differs from all functions in the list,
so we construct a function that adds one to the result found on the diagonal
above. That is, where the diagonal above has as its first 10 values:

0, 2, 0, 3, 5, 0, 0, 7, 9, 0, 0

We wish to define a function that instead returns:

1, 3, 1, 4, 6, 1, 1, 8, 10, 1, 1

Such a function can be expressed in Haskell as

4

diagonal x = (eval p (ncopies (arity p) x))

where p = dPR x

notdiagonal x = 1 + diagonal x

The diagonal function takes one natural number argument, x. It interprets it
as a primitive recursive function, p. It then evaluates that function (applied to
its own encoding x, repeated as many times as necessary to match the arity of
the function). The function notdiagonal differs from diagonal at every point,
since it is always defined to be one greater.

The Haskell function notdiagonal is a total computable function. It is
defined on all natural numbers.

The function notdiagonal is different from any primitive recursive function.
Why? Suppose it was primitive recursive. Then there would be some program,
p in the language of primitive recursive functions, and that function would have
a number, n, such that n = ePR p. But p(n) = z for some number z, and
notdiagonal n = 1 + z. Thus notdiagonal 6= p. Having obtained a contradic-
tion we conclude that notdiagonal is not a primitive recursive function.

What facts about primitive recursive functions did we use in this argument?
Not very many. We relied on the property that primitive recursive functions
are total. We relied on the existence of the eval function. And we relied on the
existence of a function from numbers to programs. This situation is called an
effective enumeration.

Definition 8.1 An effective enumeration of a set of functions is a mapping
of the natural numbers onto the set of functions, φ0, φ1, . . ., together with a
computable function eval such that eval i x = φi(x).

Fact 8.2 The primitive recursive functions can be effectively enumerated. The
function evalGoedel is an effective enumeration of the class of primitive recur-
sive functions respect to the ePR/dPR encoding.

evalGoedel i x = eval p (take (arity p) (repeat x))

where p = dPR i

Theorem 8.3 Any effective enumeration of a set of total functions is incom-
plete. That is, there are total computable functions that are not included in the
enumeration.

The proof is simply a generalization of the argument given above that there
is a total computable function that is not primitive recursive.

Corollary 8.4 There is no effective enumeration of the set of total computable
functions.

Thus any theory of the computable functions that includes all total com-
putable functions must also include partial functions.

Problem 8.1 How does the possibility that eval might not terminate change
the argument that effective enumerations are incomplete? (This is probably too
unstructured to assign as a problem, but is an important question to consider.)

5

8.3 Pairing is Primitive Recursive

Recall the definitions for describing primitive recursive functions given in Ap-
pendix A.1. To implement pairing with the Primitive Recursive functions, we
need to come up with descriptions in PrimRec sufficient to encode the definitions
from Section 8.1. The basic arithmetic and logical operations you implemented
in homework are a good start, but need to be extended. Some of the operations
from the homework are given here:

-- Elementary arithmetic

mkconst 0 = Z

mkconst n = C S [mkconst (n-1)]

one = mkconst 1

plus = PR (P 1) (C S [P 2])

times = PR Z (C plus [P 2, P 3])

pred = PR Z (P 1)

monus’ = PR (P 1) (C pred [P 2])

monus = C monus’ [P 2, P 1]

-- Elementary logic

false = Z

true = one

and = PR false (P 3)

or = PR (P 1) true

not = PR true false

ifte = PR (P 2) (P 3)

-- Predicates

iszero = PR true false

nonzero = PR false true

equal = C and [C iszero [monus],

C iszero [monus’]]

lteq = C iszero [monus]

lt = C nonzero [monus’]

To extend this list, it is very handy to develop a programming idiom that
supports bounded search for values that satisfy a predicate. This allows us,
for example, to write a naive algorithms for division and square root that seek
values satisfying the specifications of these functions. For example

div x y = {find the smallest z | (z == x) || ((y*z <= x) && (x < y*(z+1)))}

sqrt x = {find the smallest z | (z == x) || ((z*z <= x) && (x < (z+1)*(z+1)))}

6

Note that the search is always bounded by some number (here it is x in both
definitions) that is an input to the the search.

The Appendix A.2 contains a development of this bounded search technique,
and applies it to define the functions div and sqrt. All the gory details are
fully explained in Appendix A.2.

With these functions defined, we can now give primitive recursive definitions
that implement Cantor’s pairing function. The function pair constructs pairs.

Here are our definitions from Section 8.1 as Haskell functions.

pair :: Integer -> Integer -> Integer

pair k1 k2 = ((k1 + k2) * (k1 + k2 +1) ‘div‘ 2) + k2

The pairs can be deconstructed by this code fragment:

unpair :: Integer -> (Integer,Integer)

unpair z = let w = (squareRoot (8*z + 1) - 1) ‘div‘ 2

t = (w * w + w) ‘div‘ 2

y = z - t

x = w - y

in (x, y)

Here are the same definitions described as primitive recursive functions.

-- Cantor Pairing Function and Projections

pair = C plus [C div [C times [C plus [P 1, P 2],

C S [C plus [P 1, P 2]]],

mkconst 2],

P 2]

w = C div [C pred [C sqrt [C S [C times [mkconst 8, P 1]]]],

mkconst 2]

t = C div [C plus [C times [w,w],w], mkconst 2]

pi2 = C monus [P 1,t]

pi1 = C monus [w,pi2]

The function pi1 is the first (left) projection. The function pi2 is the second
(right) projection and together they describe the unpair Haskell function.

At this point we have demonstrated that primitive recursive functions are
sufficiently powerful to express functions that allow data structures like lists,
trees, and program abstract syntax, to be encoded in the natural numbers.

In particular, the primitive recursive pairing functions that can encode the
descriptions of Turing machines, inputs to Turing machines, configurations, and
computation histories.

We will assert without demonstration that, using similar techniques, we can
define primitive recursive functions that test properties of lists, trees, and pro-
grams. However, henceforth we will demonstrate such ideas with programming
languages, such as Haskell, Scheme, or C.

7

8.4 Partial Recursive Functions are Turing Complete

We will briefly return to a point made at the end of Section 7. The partial
recursive functions are Turing complete.

We review the evidence supporting this claim.

1. We can represent Turing machine descriptions as numbers using primitive
recursive pairing functions.

2. We can represent Turing machine configurations and computation histo-
ries as numbers using pairing functions.

3. We can write a primitive recursive predicate, known as the Kleene T
predicate, that takes the description of a Turing machine, e, the input to
the Turing machine, x, and a computation history of the Turing machine,
y, and returns 1 if y is a halting computation history of machine e on input
x, and 0 otherwise. NOTE, the function T tests if the given computation
history y actually describes a run of e on input x. It does not compute the
computation history y. Such a function would be much harder to write.

4. We can write a primitive recursive function, U , that takes a halting com-
putation history y and returns the final output of the computation.

5. Given a Turing machine e and input x, we can use unbounded search
to define a partial recursive function of e and x that returns the least
y such that T (e, x, y) holds. That function can be composed with U to
yield a partial function θ such that θ(e, x) = z if and only if the Turing
machine e on input x computes value z. Because the search is unbounded
is the reason we need the partial recursive functions and not the primitive
recursive functions.

The last three steps of this argument are asserted without proof.

8.5 Trace Summary

Consider the following descriptions of traces for various systems.

• DFA. A DFA M = (Q,Σ, δ, q0, F) accepts a string w1w2 . . . wn if there
exists a sequence of states r0r1 . . . qn if

1. r0 = q0

2. ri+1 = δ(ri, xi+1)

3. rn ∈ F

Given such a DFA, a string, and a sequence of states, it is easy to verify
whether or not the string is accepted.

• PDA. A PDA is defined as a 6-tuple: M = (Q,Σ,Γ, δ, q0, F). PDA M
accepts a string w = w1w2 . . . wn by final state if there exists a sequence
of states and stacks, r0, r1, . . . , rn and s0, s1, . . . , sn such that:

8

1. r0 = q0 and s0 = ε

2. (ri+1, b) ∈ δ(ri, wi+1, a) and there exists a t such that si+1 = bt and
si = at.

3. rn ∈ F

• Turing Machine. A Turing machine is defined as a 7-tuple: M =
(Q,Σ,Γ, δ, q0, qa, qr). A configuration for a TM is a string of the form
αqβ where

1. α ∈ Γ∗

2. β ∈ Γ∗

3. q ∈ Q
4. The string α represents the non-blank tape contents to the left of the

head.

5. The string β represents the non-blank tape contents to the right of
the head, including the currently scanned cell.

Two configurations are related by ` if:

1. if δ(q, a) = (p, b,R). then uqav ` ubpv
2. if δ(q, a) = (p, b,L). then ucqav ` upcbv

A turing machine accepts a string w if there exists a sequence of configu-
rations c0, cm, . . . , cn such that.

1. c0 = q0 w

2. ci ` ci+1

3. cn = α qa β

Given a chain of related configurations, it is easy to verify that a string is
accepted.

• Primitive Recursive Functions. A primitive recursive function p ap-
plied to arguments (x1, . . . , xn) computes a value n, if there exists a trace
tree t that corresponds to the computation that p applied to (x1, . . . , xn)
computes n. A trace tree is a tree of nodes where each node is labelled
with a triple (program, input, result), called its tag. Subtrees of a trace tree
coorespond to subcomputations for the compound nodes labeled with C

and PR programs (the only frm of PrimRec that have sub-programs). A
well formed tree has subtress which correspond to sub-computations. Just
as we can write a program that checks if configurations for Turing ma-
chines are related by the its transition function, we can check that parent
and child nodes in trace trees are related by the rules of computation for
PrimRec given by eval. Given a trace tree where all the parent-child
nodes are related we can write a total function that checks if a program,
its input, and a given trace-tree are consistent. (Trace trees are presented
in the appendix, Section A.3.)

9

Conclusion: All the computational systems we have studied can be verified
by simple terminating programs, given the appropriate trace object. It may be
very expensive to find a trace, but given a trace it is easy to check that if the
trace really describes the computation. In addition the strategy we showed for
the primitive recursive functions easily extends to traces for the partial recursive
functions.

Problem 8.2 Consider the context free grammars. Outline what a trace for a
context free grammar might look like. Define a simple CFG, and provide a trace
in the form you described above for a short string.

8.6 Limits of Computability

The first step in exploring the limits of computability is to understand how non-
termination can be handled. We start by taking two concepts we have developed
above, evaluation and verification, and observing that even when evaluation is
partial we can make the corresponding verification total, provided we have a
certificate justifying the calculation.

In appendix Section A.3 we show explicitly how to construct a verifier for the
primitive recursive functions. We left as an exercise the verification of the partial
recursive functions (Problems A.4, A.5). We have described in Section 8.4 how
to verify computation histories for Turing machines.

In this section we assume that the partial recursive functions have been
implemented and are represented by the datatype MuR (for mu-recursive, or
µ-recursive).

data MuR = Z

| S

| P Int

| C MuR [MuR]

| PR MuR MuR

| Mu MuR

eval :: MuR -> [Integer] -> Integer

eval Z _ = 0

eval S (x:_) = x+1

eval S _ = 0 -- relaxed

eval (P n) xs = nth n xs

eval (C f gs) xs = eval f (map (\g -> eval g xs) gs)

eval (PR g h) (0:xs) = eval g xs

eval (PR g h) (x:xs) = eval h ((x-1) : eval (PR g h) ((x-1):xs) : xs)

eval (PR _ _) [] = 0 -- relaxed

eval (Mu f) xs = try_from f xs 0

try_from f xs n = if eval f (n:xs) == 0 then n else try_from f xs (n+1)

10

The MuR type has the same constructors as PR, plus the additional constructor
Mu. As before we have a function eval that takes a MuR and a list of Integer
arguments and returns an Integer. However, now eval is a partial function.
For example, the MuR program Mu S is undefined on all values. The eval function
goes into an infinite loop when given this program. We can see the possibility
of non-termination from the function try from which is recursive and clearly
does not have an argument that decreases on every recursive call.

Furthermore, we assume that we have developed a tracing evaluator, trace
which given a program and its input might return a trace (it might also run
forever) for the MuR functions, and a trace verifier, verify, (which given a
program, its input, and a trace) determines if the trace is valid. They are very
similar to the analogous functions on PR given in the Appendix A.3, except that,
like eval, the trace generator can run forever. Of course the verifier can only
verify finite traces, but the verifier halts on every program, input, and trace
with an answer.

It is convenient to repackage verify as the following function valid, which
captures the goal that it is verifying:

valid program input result trace =

(verify program input trace) &&

(last trace == result)

The first observation we make is that if the k-ary MuR function f applied
to the inputs (n1, . . . , nk) is defined and equal to w, then eval of f(n1, . . . , nk)
returns w and trace applied to f and the inputs (n1, . . . , nk) will return a trace
c which we will call a certificate, and verify f (n1, . . . , nk) c will return True.
The construction of the functions trace and valid can be seen as a proof of
this statement.

The next observation is that if there is a certificate that validates f(n1, . . . , nk) =
w then f(n1, . . . , nk) is indeed defined and equal to w. These observations are
combined in the theorem:

Theorem 8.5 (eval f (n1, . . . , nk)) = w if and only if there exists a certificate
c such that (valid f (n1, . . . , nk) w c).

Note that this theorem relates the partial function eval to the total function
valid.

8.6.1 Halting

In Section 8.2, we used the technique of diagonalization to construct a total
function that was not primitive recursive. In this section we will use a sim-
ilar technique to prove that there is not a total MuR function halt with the
specification that halt f (n1, . . . , nk) if and only if f(n1, . . . , nk) is defined.

Suppose there were such a function. Then we could construct the function:

notdiagonal x = if (halt (dMuR x) (repeat x)) then loop else 0

loop = loop -- a value that loops

11

If we apply notdiagonal to the code for a value that loops when given its
own description as input, such as Mu S, we should get a function that terminates
and returns 0. On the other hand, if we apply notdiagonal to a program that
returns a value when applied to its own description, then the diagonal function
will loop.

Since by supposition halt is a partial recursive function, the function notdiagonal

is also partial recursive. Since it is a partial recursive function, there is a formal
description of it in the type MuR. Call that description p. Furthermore, p can be
encoded by a natural number, n using the eMuR function. That is there is an n
such that n = eMuR p.

Consider notdiagonal n.
Elaborating the definition gives:

if (halt (dMuR n) (repeat n)) then loop else 0

Since we know n to represent p, and know p is a one place function, this can be
rewritten as:

if (halt p [n]) then loop else 0

We proceed by cases on halt p [n]:

• halt p [n] = true

In this case notdiagonal n simplifies to loop. But that contradicts that
p = notdiagonal since p halts on n while notdiagonal loops.

• halt p [n] = false

In this case notdiagonal n returns 0. This also contradicts p = notdiagonal

since p does not halt on n while notdiagonal returns the value 0.

Having obtained contradictions in both cases, we conclude that there is no
partial recursive function equivalent to halt, as we had assumed.

This proves that the halting problem is not computable:

Theorem 8.6 There is no total computable function that computes halt.

The halting problem can be formulated for all reasonable Turing complete
models of computation.

9 Consequences of the Halting Problem

So what do we know exactly about the Halting problem?
We know that if a partial recursive function p is defined on input x then

the eval function will terminate and find the answer. That means we can
algorithmically say “yes” to the question “does p halt on x?” in all cases where
the answer is “yes”.

However, we know that there is no total function that decides the halting
problem.

12

Are these statements in conflict? Not exactly.
We will classify how hard a problem is by how well a computable function

can answer a language membership question. There are three cases we look at
today: (1) we can definitively say yes or no to any question is x ∈ A with a
total computable function, (2) we can definitively say yes if x ∈ A, but in some
cases where x 6∈ A the function is undefined, and (3) none of the above: there
are both x ∈ A and y 6∈ A on which the function in question is undefined.

In the first case we will say that A is decidable. There is a total function p
that says yes or no to all questions about membership in A. (p x↔ x ∈ A)

In the second case we will say that A is recognizable. That is, there is a
partial recursive function that accepts all elements of A. (x ∈ A→ p x)

The third case we will refer to as not recognizable.
In the context of this vocabulary, we will say that the set of pairs (p, x) such

that p halts on input x is recognizable but not decidable. Note this is exactly
analogous to Siper’s acceptance problem ATM . The definitions used throughout
this section correspond to those of similarly named Turing machine concepts in
Sipser.

In practical terms, decidability is a strongly desirable property. If a problem
is not decidable then any total algorithmic solution will be approximate. That
is, if it always generates an answer it will get some answers wrong!

Do undecidable problems arise in practice? The answer to this is yes, par-
ticularly in the context of properties of programs. There is a general theorem,
known as Rice’s theorem, that says that any non-trivial property of program
behaviors is undecidable. That is, if φ is a nontrivial property of programs, and
we want φ(p) to imply φ(q) whenever p and q behave the same on all inputs
(i.e. ∀x.p(x) = q(x)), then φ is undecidable.

A Appendix: Details of the Construction

A.1 Primitive Recursive Functions as Haskell Datatype

In the homework and in class we have described the primitive recursive functions
as a language. Below we give an extended1 Context Free Grammar for such a
language.

Term -> Z

| S

| P Index nth projection

| C Term [Term (, Term)*] composition

| PR Term Term primitive recursion

| (Term) grouping

Index -> 1 | 2 | 3 | ...

1We extend the notation of context free grammar using the Kleene-star operator and the
... notion to denote the infinite set if strings denoting the postive numbers.

13

Well-formed strings in this language denote primitive recursive functions. In
this note we describe how we might compute over such representations. Our
notation of choice is the Haskell programming language. In this section we
give a small Haskell program that introduces data structures to describe terms
that denote primitive recursive functions, and several functions over these data
structures. First the description of data.

data PrimRec

= Z

| S

| P Int

| C PrimRec [PrimRec]

| PR PrimRec PrimRec

This Haskell declaration introduces a new datatype called PrimRec. In
essence it defines an inductively defined set, which we should be familiar with.
Elements in this set include Z, (PR S Z), etc. Note that there are 5 rules for
defining elements of PrimRec. As in most inductively defined sets, some ele-
ments incorporate smaller elements inside. In PrimRec those elements starting
with C and PR incorporate other elements of the set.

Note that the grammar to describe strings was designed so that strings in
that grammar would be well-formed Haskell programs as well as descriptions of
the primitive recursive programs.

Functions over elements of PrimRec will have 5 rules, one for each of the ways
to form an element of PrimRec. The denotation of the elements of PrimRec are
total functions of arity n that consume and produce integers. We can write a
function that computes these denotations. We call this function eval. It takes
a PrimRec and a list of integers (the functions inputs), and produces an integer.

eval :: PrimRec -> [Integer] -> Integer

eval Z _ = 0

eval S (x:_) = x+1

eval S _ = 0 -- default value for erroneous case

eval (P n) xs | n <= length xs = nth n xs

eval (P n) xs = 0 -- default value for erroneous case

eval (C f gs) xs = eval f (map (\g -> eval g xs) gs)

eval (PR g h) (x:xs) =

if x==0 then eval g xs

else eval h ((x-1) : eval (PR g h) ((x-1):xs) : xs)

eval (PR _ _) [] = 0 -- default value for erroneous case

nth _ [] = 0 -- default value for erroneous case

nth 0 _ = 0 -- default value for erroneous case

nth 1 (x:_) = x

nth (n) (_:xs) = nth (n-1) xs

The function eval is total. It returns some integer for every PrimRec and
every list of inputs. Some of these these are not compatible, on these cases eval

14

returns 0. There are 5 compatible cases (one for each of the ways a PrimRec

can be formed.
Here is a sample execution from my Haskell session.

*Examples> plus

PR (P 1) (C S [P 2])

*Examples> eval plus [3,4]

7

Note: This is a slight variation on the version of the code presented in the
previous note. The key differences are:

1. The datatype PR has been renamed PrimRec to avoid confusing the datatype
(now PrimRec) with the constructor (still PR).

2. Several cases that previously generated run-time errors are now defined.
This makes eval total on PrimRec. The previous version of eval was a
partial function; it would throw an exception in some cases.

A.2 Bounded minimization is Primitive Recursive

Mathematically, if P (x1, x2, . . . , xk) is a predicate (returns 0 if false, 1 if true),
then

µx < n.P (x, x2, . . . , xk)

returns the least x such that P (x, x2, . . . , xk) 6= 0, provided there is such an x less
than n. If no such element exists it returns a value x ≥ n. Note that this is very
similar to the unbounded search capability in rule VI, in Section 7.6. Adding
the bound significantly restricts its expressive power, and makes it possible to
define search within the Primitive Recursive functions.

Bounded minimization gets implemented as a k-place primitive recursive
function that takes the bound as its first argument. That function is generated
by the Haskell function bmin, which takes the predicate P and its arity as
arguments. For example, the following interaction reports the least integer less
than 2 that satisfies the true predicate and the least integer less than 2 that
satisfies the false predicate:

*PRCantor> eval (bmin true 1) [2]

0

*PRCantor> eval (bmin false 1) [2]

2

The Haskell function that generates instances of bmin is given below. First,
the “model” code of a Haskell function that behaves like the primitive recursive
function is given. Then the code that actually generates the primitive recursive
predicate is given.

-- Bounded minimization (search)

bmin_model p (0:xs) = 1

15

bmin_model p (x:xs) = let r = (bmin_model p (x-1:xs))

in if r < x then r

else if p (x-1:xs) then x-1 else x

bmin p n = PR one

(C ifte [C lt [P 2, P 1],

P 2,

C ifte [C p (P 1: take (n-1) (map (\j -> P j) [3..])),

P 1,

C S [P 1]]])

In this code, the expression [3..] indicates the infinite list of numbers starting
at 3. These numbers are turned into instances of the projection function by the
map function. Thus this expression:

map (\j -> P j) [3..])

stands for the infinite list of projection functions, [P 3, P 4, ...]. The
function take only requires the first n-1 elements of this list. Haskell uses a
technique called lazy evaluation that makes it possible to write functions that
manipulate potentially infinite objects, as long as they ultimately only demand
finitely many values.

For example, here is a hand formatted version of the output of a simple
predicate generate by bmin:

*PRCantor> bmin false 1

PR (C S [Z])

(C (PR (P 2) (P 3))

[C (C (PR Z (C S [Z]))

[PR (P 1) (C (PR Z (P 1)) [P 2])])

[P 2,P 1],

P 2,

C (PR (P 2) (P 3))

[C Z [P 1],P 1,C S [P 1]]])

Which can be simplified to:

*PRCantor> bmin false 1

PR one

(C ifte

[C lt

[P 2,P 1],

P 2,

C ifte

[C false [P 1],

P 1,

C S [P 1]]])

16

Once bounded minimization is available, it is possible to write naive search-
based algorithms to find values easily characterized by predicates. These algo-
rithms tend to be inefficient, but they do demonstrate that the functions can
be computed by functions in the class.

For example, we can implement division of natural number a by natural
number b as a search for the least q such that q ∗ b ≤ a and a < (q+ 1) ∗ b. This
condition is coded up as the three place predicate isdiv that expects arguments
q, a and b:

isdiv = C and [C lteq [C times [P 1, P 3], P 2],

C lt [P 2, C times [C S [P 1], P 3]]]

Using this predicate and bounded minimization we can implement natural num-
ber division as follows:

div = C (bmin isdiv 3) [C S [P 1], P 1, P 2]

In a similar manner, we can implement a very inefficient square root algorithm:

issqrt = C and [C lteq [C times [P 1, P 1],P 2],

C lt [P 2, C times [C S [P 1], C S [P 1]]]]

sqrt = C (bmin issqrt 2) [P 1, P 1]

With these functions defined, we can now give primitive recursive definitions
that implement Cantor’s pairing function. The function pair constructs pairs.
The function pi1 is the first (left) projection. The function pi2 is the second
(right) projection.

-- Cantor Pairing Function and Projections

pair = C plus [C div [C times [C plus [P 1, P 2],

C S [C plus [P 1, P 2]]],

mkconst 2],

P 2]

w = C div [C pred [C sqrt [C S [C times [mkconst 8, P 1]]]],

mkconst 2]

t = C div [C plus [C times [w,w],w], mkconst 2]

pi2 = C monus [P 1,t]

pi1 = C monus [w,pi2]

At this point we have demonstrated that primitive recursive functions are
sufficiently powerful to express functions that allow data structures like lists,
trees, and program abstract syntax, to be encoded in the natural numbers.

In particular, the primitive recursive pairing functions that can encode the
descriptions of Turing machines, inputs to Turing machines, configurations, and
computation histories.

We will assert without demonstration that, using similar techniques, we can
define primitive recursive functions that test properties of lists, trees, and pro-
grams. However, henceforth we will demonstrate such ideas with programming
languages, such as Haskell, Scheme, or C.

17

Problem A.1 Given a 3-place primitive recursive function f , write an equiv-
alent 1-place function f ′ that takes as input a single number representing the
triple as nested pairs and behaves as f . That is, f ′(pair x1 (pair x2 x3)) =
f(x1, x2, x3).

Discussion The diagonalization presented here generalizes well to all effective
enumerations of total functions, but it does not reflect much of the essence of
the class of primitive recursive functions. Ackermann developed a function
that diagonalizes over the primitive recursive functions in a different way. He
constructs a function that grows faster than any primitive recursive functions.2

Ackermann’s diagonalization is in some ways more satisfying than the one
presented above, but is specific to the primitive recursive functions.

A.3 Certifying Computation with Traces

One of the characteristics of a computational system is that it proceeds by a
series of easily verifiable steps. For a given system, a set of these verifiable
steps is called a trace. For the finite automata we only needed to check that
the state transitions were appropriate for the input. For push down automata
we had to additionally manage the stack contents. For Turing machines we
introduced configurations and verified that one followed from another according
to the definition of the machine.

How can we certify a computation for the primitive recursive or partial
recursive functions? Each step is a very simple calculation. In this section we
present a simple record of that calculation as a tree. The root node of the tree
is at the bottom of the picture. The children of each node are those lines above
that node that are indented exactly 3 spaces. For example, consider the adding
2 and 3 (e.g. plus(2, 3) = PR(P 1)(C S [P 2]) (2, 3)). That calculation is
described by the trace tree in the picture below.

2Hein discusses Ackermann’s function in Section 13.2.3. He presents a proof sketch. If you
wish to elaborate the proof sketch, consider calculating the number n based on the nesting of
PR operations in the primitive recursive function.

18

10 S (4) = 5

9 P 2 (1,4,3) = 4

8 C S [P 2] (1,4,3) = 5

7 S (3) = 4

6 P 2 (0,3,3) = 3

5 C S [P 2] (0,3,3) = 4

4 P 1 (3) = 3

3 PR (P 1) (C S [P 2]) (0,3) = 3

2 PR (P 1) (C S [P 2]) (1,3) = 4

1 PR (P 1) (C S [P 2]) (2,3) = 5

Each line represents an easily verified calculation step. Line 1 asserts that
the root of the computation (add(2, 3)) is equal to 5. To certify this we must
verify the assertions on lines 2 and 8, which are the immediate sub-trees of the
root (note the indentation). These two subtrees follow directly from the way a
PR node is evaluated. Study the case for primitive recursion on non-zero inputs
(the second line below) from Section ??

f(0, x1, . . . , xk) = h(x1, . . . , xk)

f(n+ 1, x1, . . . , xk) = g(n, f(n, x1, . . . , xk), x1, . . . , xk)

The first subtree PR (P 1) (C S [P 2]) (1,3) = 4 (line 2) follows from
the computation f(n, x1, . . . , xk), and the second subtree C S [P 2] (1,4,3) = 5

(line 8) follows from the computation g(n, f(n, x1, . . . , xk), x1, . . . , xk) where the
sub term f(n, x1, . . . , xk) has been replaced by its value (4) to get g(n, 4, x1, . . . , xk).

The subtree on line 2 is also a PR term so it has subtrees on lines 3 and 5.
This pattern repeats until a node without subterms (Z, S, or (P n)) is reached,
in which case we have a simple assertion (lines 4, 6, 7, 9, and 10).

What rules are we using to verify the calculations? For the atomic primitive
recursive functions Z, S and Pi, we directly verify that the result is obtained
from the arguments correctly.

For the composition form (C f [g1, . . . , gk])(x1, . . . , xn) = z, we need to
verify that the tree has the shape:

f(y1, . . . , yk) = z
gk(x1, . . . , xn) = y1
...
g1(x1, . . . , xn) = yk

C f [g1, . . . , gk])(x1, . . . , xn) = z

Where each C node has k+ 1 subtrees Note that the subtrees beginning on lines
5 and 8 conform to this pattern.

For the primitive recursion form we have two cases: one for when the first
argument is zero and one for when the first argument is nonzero. We consider
them in order.

19

In the zero case we have the form (PR f g)(0, x2 . . . , xk) = z. In this case
we verify we have the tree has shape

f(x2, . . . , xn) = z
(PR f g) (0, x2 . . . , xk) = z

Where the PR node has one subtree. This occurs in line 3 of the example.
For the nonzero case we have the form (PR f g)(x + 1, x2 . . . , xk) = z. In

this case we need to verify that the tree has the shape

g(x, r, x2, . . . , xn) = z
(PR f g)(x, x2 . . . , xk) = r

(PR f g)(x+ 1, x2 . . . , xk) = z

Where the PR node has exactly two subtrees. This pattern occurs in line 1 and
2 of the example.

Exercise A.2 Test your understanding of the example by showing the explicit
correspondence between these rules and the example. Label each part of the
example with the corresponding variables in the three patterns presented above.

Exercise A.3 Develop trace trees for the following computations:

1. (PR (C S [Z]) Z) [0]

2. (PR (C S [Z]) Z) [1]

3. (PR Z (C S [Z])) [0]

4. (PR Z (C S [Z])) [1]

5. (PR (P 2) (P 3)) [1,2,3]

Problem A.4 How can we verify a step of unbounded search? Develop verifi-
cation rules for rule VI.

A.3.1 Haskell code to generate and verify traces (optional)

To demonstrate that this is all directly computable we implement a version
of trace trees in Haskell. We represent a step as a triple consisting of the
function, the arguments, and the result. We represent this by the Haskell type
(PR,[Integer],Integer). A trace tree will store such a triple at every node
in the tree. A trace tree node is good if every stored triple is consistent with
the sub-trees of that node. A trace tree root justifies the final calculation in the
trace. So, the example justifies that plus of 2 and 3 is 5.

First we give the Haskell code to define a trace tree.

20

data TraceTree x = Ztree x

| Stree x

| Ptree Int x

| Ctree (TraceTree x) [TraceTree x] x

| PRtree0 (TraceTree x) x

| PRtreeN (TraceTree x) (TraceTree x) x

| Stuck x

deriving (Show, Eq)

tag (Ztree x) = x

tag (Stree x) = x

tag (Ptree n x) = x

tag (Ctree x xs y) = y

tag (PRtree0 y z) = z

tag (PRtreeN x y z) = z

tag (Stuck z) = z

res x = z where (_,_,z) = tag x

Note that each node type is tagged with a polymorphic component of type x.
We can select this tag using the tag function. In our code the tag is always
a triple (PR,[Integer],Integer), so the function res selects the final result
from a node.

The checking function is similar in its structure to the eval function, in that
it analyzes the structure of the primitive recursive function.

trace2:: PR -> [Integer] -> TraceTree (PR,[Integer],Integer)

trace2 Z xs = Ztree (Z,xs,0)

trace2 S (x:xs) = Stree (S,(x:xs),x+1)

trace2 S [] = Stuck (S,[],0)

trace2 (P n) xs | n <= length xs = Ptree n (P n,xs,nth n xs)

trace2 (P n) xs = Stuck (P n,xs,0)

trace2 (C f gs) xs = let gtraces = map (\g -> trace2 g xs) gs

ys = map res gtraces

ftrace = trace2 f ys

in Ctree ftrace gtraces (C f gs,xs,res ftrace)

trace2 (PR g h) (0:xs) =

let trace = trace2 g xs

in PRtree0 trace (PR g h,0:xs,res trace)

trace2 (PR g h) (x:xs) =

let rectrace = trace2 (PR g h) ((x-1):xs)

r = res rectrace

htrace = trace2 h ((x-1):r:xs)

r’ = res htrace

in PRtreeN rectrace htrace (PR g h,x:xs,r’)

trace2 (PR g h) [] = Stuck (PR g h,[],0)

21

The trace in the example was generated by this function, although it was
pretty printed by a function (not shown) which indicates the tree structure by
indenting.

In addition to generating trace trees it is possible to check them to see if
they are good traces. The following code verifies that a trace is good. The do

construct propagates the failure behavior of Maybe using a mechanism called a
Monad.

check:: TraceTree (PR,[Integer],Integer) -> PR -> Maybe Integer

check (Ztree (Z,xs,0)) Z = Just 0

check (Stree (S,x:xs,y)) S =

if y == (x+1) then Just y else Nothing

check (Ptree n (P m,xs,i)) (P k) =

if (n==m) && (k==m) && (m <= length xs) && (nth m xs == i)

then Just i

else Nothing

check (Ctree t ts (C f gs,xs,i)) (C h ks) =

do { ys <- zipM check ts gs

; j <- check t f

; let (_,zs,k) = tag t

; if (zs == ys) && (j == i) && (k == i) && (h==f) && (gs==ks)

then (Just i)

else Nothing }

check (PRtree0 t (PR f g,0:xs,i)) (PR h j) =

do { z <- check t f

; if (z==i) && (f==h) && (g==j)

then Just i

else Nothing }

check (PRtreeN s t (PR f g,n:xs,i)) (PR h j) =

do { r <- check s (PR f g)

; k <- check t g

; let (_,ws,_) = tag s

(_,zs,_) = tag t

; if (f==h) && (g==j) && (k==i) && (ws==(n-1):xs) && (zs==(n-1):r:xs)

then (Just i)

else Nothing }

check x y = Nothing

Problem A.5 Extend to the partial recursive functions. That is, build a ver-
ifier and tracing evaluator to verify and generate verifiable traces for the MuR

functions.

As you study this program look at the structure of the recursion. The check
function is defined by induction on TraceTree. It is a total function.

Exercise A.6 Define a function verify that takes a TraceTree for a compu-
tation and returns a Boolean.

22

